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The vast majority of cellular functions involve the use of one or more proteins. Al-
though these biomolecules have a myriad of specialized functions, many of which
are covered in subsequent chapters, we focus here on general issues. Proteins are
composed of linear strings of amino-acid residues, parts of which generally assemble
into simple secondary structures, e.g., helices and sheets held together by hydro-
gen bonds. These, in turn, arrange into tertiary (three-dimensional and frequently
globular) architectures. Quaternary structures, the subject of Chapter 13, arise
when separate proteins associate into higher-order assemblages via binding inter-
faces. Whereas most genomes encode for several thousand proteins, only a few hun-
dred protein-coding genes are shared across all species (Harris et al. 2003; Koonin
2003), implying that lineage-specific gains and losses of genes are common.

Three general topics will be explored in this chapter. First, we consider the
fundamental biochemical and biophysical properties of the twenty major amino acids
that serve as the building blocks of virtually all proteins. It is highly unlikely that
all twenty amino acids entered the biological world at the same moment of time, so
it is of interest to consider the potential order of evolutionary entry, as well as the
consequences of a presumably simpler early amino-acid alphabet.

Second, one of the central problems of protein science concerns the stable fold-
ing of proteins into their so-called native states. Levinthal (1968) famously pointed
out that proteins longer than a few dozen residues cannot possibly examine all fea-
sible configurations en route to final assembly, concluding that folding pathways
must be guided by information in the primary amino-acid sequence. The underly-
ing guidelines must operate on time scales short enough to enable rapid responses to
gene-expression demands and accurate enough to ensure the proper assembly of cat-
alytic sites and avoidance of the energetic wastage associated with the management
and disposal of improper assemblies. Poorly folded proteins impose the additional
risk of initiating inappropriate aggregations with self and nonself proteins.

Third, in light of these features, we will review the evolutionary constraints on
the amino-acid sequences found in different proteins, in different regions of proteins,
and in different phylogenetic lineages. The central questions here concern the degree
to which various pairs of amino acids are substitutable for each other, the extent
to which evolution at one particular site is independent of that of others, and the
overall capacity of natural selection to counter the relentless input of amino-acid
altering mutations.

The Essential Features of Proteins
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Proteins are composed of variable amino-acid chain lengths, parts of which typically
fold into more compact localized domains. Average domain sizes are roughly con-
stant across prokaryotes and eukaryotes, but the linkers between domains tend to
average several-fold longer in eukaryotes, leading to ∼ 50% longer total chain lengths
in the latter (an average of ∼ 530 residues in eukaryotes, and ∼ 350 in prokaryotes;
Wang et al. 2011; Rebeaud et al. 2021). Given that each amino acid is chemi-
cally unique with respect to molecular weight, charge, hydrophobicity, polarity, etc.
(Table 12.1), when primary sequences are further combined into three-dimensional
forms, the resultant combinatorial diversity endows protein repertoires with an es-
sentially boundless array of structures and functions.

Each amino-acid consists of a central carbon atom attached to one hydrogen
atom, one NH2 (amino) group, one CO2 (carbonyl) group, and a unique cognate side
chain (Figure 12.1). Peptide chains are assembled by mRNA-translating ribosomes,
with the amide group of each consecutive amino acid reacting with the carboxyl
group of the adjacent member of the growing chain (Figure 12.2). Glycine has
the simplest side chain, just a single hydrogen atom, and is therefore symmetrical
and quite flexible. Two residues contain sulfur (cysteine and methionine), whereas
several have side chains containing nitrogen, and serine and threonine side chains
uniquely carry an OH group. Proline is exceptional in that the side chain is cova-
lently bonded to the nitrogen atom of the peptide backbone, and as a consequence
is the only amino acid lacking an amide hydrogen atom for use in hydrogen bonding.
Alanine, valine, leucine, and isoleucine have simple side chains ending in CH3, and
like glycine and proline are highly hydrophobic.

Amino-acid composition. To a large extent, the different properties of amino
acids dictate where they are deployed within proteins, having direct implications for
the biochemical and structural consequences of mutations. To acquire functionality,
proteins need to achieve proper folds, which are strongly dependent upon backbone
hydrogen bonds between residues (often located distantly on the polypeptide chain).
In addition, hydrophobic residues, which avoid water molecules, tend to be buried
within the cores of proteins. Exposure of hydrogen bonds and hydrophobic residues
of protein cores leads to folding instability, which increases stickiness and the po-
tential to engage in inappropriate protein-protein interactions. Thus, the surfaces
of proteins are typically well wrapped with hydrophilic residues so as to minimize
the intrusion of water molecules into the core.

It is unlikely that the amino-acid alphabet had reached the current twenty-
residue state when the first protein-based cells emerged some four billion years ago.
This then raises the question as to how much functional protein diversity might have
been achieved in a setting involving a smaller number of amino acids. The potential
seems large, given that many proteins with diverse functions in today’s world do
not contain the full set of twenty amino acids. An extreme case is an antifreeze pro-
tein in a flounder fish that contains only seven different residues (Sicheri and Yang
1995), and a number of proteins in prokaryotes are entirely devoid of basic residues
(McDonald and Storrie-Lombardi 2010). Moreover, gene-sequence manipulations of
modern-day proteins show that, provided the catalytic site is not compromised, sub-
stantial reductions in the number of distinct amino acids used in primary sequences
can be achieved without loss of function. For example, Akanuma et al. (2002) were



THE PROTEIN WORLD 3

able to modify a 213-residue protein involved in pyrimidine biosynthesis to function
in the absence of seven amino acids, with 188 positions being occupied by just nine
amino acids. A bovine pancreatic trypsin inhibitor sequence modified to contain
> 33% alanine residues retained its native fold and functions (Islam et al. 2008). In
addition, a simplified version of an archaeal chorismate mutase has been engineered
to contain just nine amino acids (MacBeath et al. 1998; Walter et al. 2005). Several
other such studies are reviewed in Longo and Blaber (2012) and Longo et al. (2013).

Although a diverse protein repertoire can be derived from a restricted set of
amino acids, laboratory evolution experiments also suggest that enhanced enzyme ef-
ficiency would have been promoted by expansion of the amino-acid alphabet (Müller
et al. 2013). Moreover, in experiments where the twenty canonical amino acids are
supplemented with noncanonical forms, enzymes can be engineered to have still
higher catalytic rates than found in natural populations (Windle et al. 2017; Zhao
et al. 2020; de la Torre and Chin 2021), indicating that the canonical set of twenty
amino acids upon which all life depends constitutes a constraint on natural selec-
tion’s ability to promote proteins with optimal features.

Origin of amino acids. Given that the substantial differences among amino-
acid features (e.g., positive vs. negative charge, hydrophilic vs. hydrophobic) define
their potential contributions to various cellular transactions, an understanding of
the temporal order of evolutionary incorporation of the amino acids into the early
proteome might help clarify the origin of cellular features. All of the numerous
attempts devoted to such inference rely on assumptions with tenuous validity, and
the initial functions of some amino acids may have been totally unrelated to their
use in today’s proteins (e.g., charged amino acids might have been deployed to cell
surfaces to improve adhesion to counter-charged surfaces). With these caveats in
mind, the following is a brief survey of the conclusions reached by various approaches.

Davis (1999) postulated that the earliest arriving amino acids would be those
with the simplest production mechanisms, i.e., with the fewest steps in today’s
biosynthetic pathways. Most amino-acid biosynthesis initiates at hubs of central
metabolism – the citric-acid cycle, the pentose phosphate cycle, or the central trunk
that connects the two, allowing the derivation of proximity measures for all twenty
amino acids (Figure 12.3). For example, alanine, aspartic acid, asparagine, glu-
tamic acid, and glutamine are just one to two steps removed from their metabolic-
byproduct precursors, whereas biosynthesis of histidine, lysine, phenylalanine, tryp-
tophan, and tyrosine requires 10 to 13 additional steps. Under Davis’ hypothesis,
the earliest amino acids were aspartic acid, glutamic acid, asparagine, and glutamine
(for a variety of reasons, he viewed alanine as a later addition). These four building
blocks are often referred to as the “nitrogen-fixing” amino acids as the first two
are, respectively, produced by the addition of an amino group to oxaloacetate and
α-ketoglutarate (both components of the citric acid cycle), with secondary amino
additions then leading to asparagine and glutamine. One concern with this type of
reasoning is that variation exists in the pathways used in amino-acid biosynthesis
by different species (Chapter 19), leaving uncertain the number of steps required in
the production of various amino acids in ancestral pre-LUCA species.

An alternative approach to inferring the temporal ordering of amino-acid ap-
pearance relies on phylogenetic analysis. For example, if one is willing to assume
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that the amino-acid content of the most strongly conserved protein sequences across
the Tree of Life reflects the availability of amino acids at the times of protein origin,
one is led to conclude that alanine, glycine, aspartic acid, and valine were early ar-
rivals, with cysteine, tryptophan, tyrosine, phenylalanine, glutamine, and glutamic
acid being among the late arrivals (Brooks and Fresco 2002; Brooks et al. 2002). Us-
ing a rather different approach, involving simple pairwise comparisons of sequences
in sister taxa with an outgroup to infer the directionality of amino-acid substitu-
tions, Jordan et al. (2005) suggested a universal trend across the Tree of Life toward
an increase in cysteine, methionine, histidine, serine, and phenylalanine, and a de-
crease in proline, alanine, glycine, and glutamic acid. The underlying assumption
here is that amino acids that are declining in frequency represent the pool of early
arrivals. A clear concern with these approaches is the assumption that there has
been insufficient time in the history of life for the complete erasure of information on
amino-acid compositions at the pre-LUCA stage. It is difficult to reconcile this view
with the vast stretch of post-LUCA time and known rates of mutation (Chapter 4).

Despite the uncertainties in our ability to project backwards to the primordial
amino-acid pool, by integrating the above sorts of analyses with empirical obser-
vations on the ease of synthesizing amino acids in potential settings for the origin
of life, a loose argument has been made for a limited set of ten prebiotic amino
acids: alanine, aspartic acid, glutamic acid, glycine, isoleucine, leucine, proline,
serine, threonine, and valine (Higgs and Pudritz 2009; Longo and Blaber 2014).
Notably absent from this list are two of the earliest arrivers under Davis’ hypoth-
esis, asparagine and glutamine. If roughly correct, this list of early amino acids
has implications for the temporal ordering of the emergence of cellular biochemistry
and the features of early proteins. For example, an absence of the basic, positively
charged amino acids (arginine and lysine) likely would have limited the potential
for intimate relationships between proteins and acidic nucleic acids (with negatively
charged backbones).

Table 12.1. Properties of the twenty major amino acids (and their conventional abbre-
viations). MW denotes the molecular weight in grams/mol. Hydropathy is the log of a
coefficient that measures the propensity of a molecule to dissociate from water into a non-
polar solvent (Wolfenden et al. 2015). Interface denotes the log of the ratio of the incidence
of an amino acid on interfaces to that on exposed surfaces of proteins; these numbers are
taken from E. coli, although similar results are obtained in other species (Levy et al. 2012).
GC is the average fractional G/C content within codons in the primary genetic code (Fig-
ure 12.1). Cost is the biosynthetic cost of a single amino-acid in units of ATP hydrolyses,
which assumes a starting point of glucose, and includes both the loss of ATP generation
due to the diversion of precursors (with ATP-generating power) and the direct use of ATP
in biosynthesis (derived in Chapter 17).

Amino acid Polarity Charge MW Hydropathy Interface GC Cost

Alanine (Ala, A) nonpolar 0 89 2.11 0.01 0.83 16
Arginine (Arg, R) polar + 174 -4.32 -0.09 0.83 31
Asparagine (Asn, N) polar 0 132 -4.88 -0.27 0.17 16
Aspartic acid (Asp, D) polar − 133 -3.29 -0.75 0.50 14
Cysteine (Cys, C) nonpolar 0 121 1.53 1.04 0.50 17
Glutamic acid (Glu, E) polar − 147 -2.26 -0.79 0.50 20



THE PROTEIN WORLD 5

Glutamine (Gln, Q) polar 0 146 -4.07 -0.41 0.50 21
Glycine (Gly, G) nonpolar 0 75 0.20 -0.18 0.83 12
Histidine (His, H) polar + 155 -3.49 0.12 0.50 32
Isoleucine (Ile, I) nonpolar 0 131 4.24 1.11 0.11 39
Leucine (Leu, L) nonpolar 0 131 4.24 0.91 0.38 44
Lysine (Lys, K) polar + 146 -0.27 -1.18 0.17 36
Methionine (Met, M) nonpolar 0 149 1.91 1.01 0.33 25
Phenylalanine (Phe, F) nonpolar 0 165 2.64 1.27 0.17 62
Proline (Pro, P) nonpolar 0 115 3.75 -0.18 0.83 26
Serine (Ser, S) polar 0 105 -2.82 0.14 0.50 14
Threonine (Thr, T) polar 0 119 -1.83 0.10 0.50 20
Tryptophan (Trp, W) nonpolar 0 204 1.83 0.79 0.68 71
Tyrosine (Tyr, Y) polar 0 181 -0.31 0.88 0.17 57
Valine (Val, V) nonpolar 0 117 4.09 0.76 0.50 31

Protein Folding and Stability

To acquire their enzymatic or structural features, individual polypeptide chains
generally must fold into specific three-dimensional configurations. The overall ar-
chitecture of an entire amino-acid chain is referred to as its tertiary structure, and
the most appropriate functional configuration is referred to as its native state.

In the process of complete folding, numerous substructures are initially formed,
the most common of which are α helices and β sheets. In α helices, the amide group
of every amino-acid donates a hydrogen bond to the backbone carboxyl group of
the amino acid four residues earlier in the polypeptide chain. Total helix-chain
lengths are typically on the order of 10 to 15 residues (Figure 12.4). Methionine,
alanine, leucine, glutamic acid, and lysine have high helix-forming propensities,
whereas glycine is poor in this regard, and a proline residue will break or kink
a helix because it cannot donate an amide hydrogen bond. In contrast, β sheets
consist of sets of chains (each chain typically 3 to 10 residues long) held together
by backbone hydrogen bonds. Such sheets can consist of parallel or anti-parallel
chains, usually four to five but as many as ten, with the physical distance between
hydrogen-bonding residues in the primary sequence depending on the length of the
strands within the sheet.

Higher-order structures are commonly assembled from α helices and β sheets.
For example, coiled coils result from the interlacing of two or three adjacent α helices.
Helix-loop-helix repeats can yield a variety of different higher-order geometric forms,
depending on the angular features of the loop. The (βα)8 barrel, one of the most
common enzyme folds throughout the Tree of Life, consists of eight alternating units
of β strands and α helices folded into an internal curved β sheet surrounded by α

helices.
The reliance of almost all proteins on a moderate number of fold types is unlikely

to simply be an evolutionary fossil of common ancestry. Rather, commonly observed
folds appear to be natural outcomes of the fundamental features of peptide chains,
including the intrinsic ability to hydrogen-bond and form hydrophobic associations
with each other. Indeed, random sequences of amino acids (even those involving
reduced sets of amino acids, including homopolymers) commonly generate stably
folded proteins (Doi et al. 2005; Zhang et al. 2006; López de la Osa et al. 2007; Go
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et al. 2008; Labean et al. 2011). This suggests that the compact globular nature
of proteins is an expectation based on physical properties, and hence need not be
entirely a product of the guiding hand of natural selection (Alva et al. 2015). Thus,
the majority of common folds in today’s proteins may have been present even before
the establishment of the full genetic code.

The rate of protein folding. Given the large number of fold types in the protein
world, the specific folding pathways utilized by different proteins must be extraordi-
narily diverse. Nonetheless, considerable effort has gone towards identifying general
solutions to the “protein-folding problem” that transcend the details of secondary
structure. This is a highly technical field, but enough quantitative information now
exists to yield general insight into the typical time scales and energetic forces in-
volved in productive protein folding. We start by focusing on folding unassisted by
outside factors, deferring until Chapter 14 consideration of the cellular mechanisms
that have evolved to assist with the process.

One conceptual solution to the Levinthal paradox invokes the metaphor of a
folding funnel, with an energetically favorable bias in the landscape of possible folds
acting to progressively channel a protein towards the relatively stable native state
(Dill and McCallum 2012; Englander and Mayne 2014, 2017; Wolynes 2015; Neu-
pane et al. 2016). The hallmark of a stable protein is a well-packed hydrophobic core,
resulting from the self-aggregation of nonpolar surfaces in water, although the ac-
tual underlying molecular mechanisms driving such clustering remain unclear (Ball
2008; Snyder et al. 2011). Additional factors involved in protein folding and stability
include hydrogen bonds in α helices and β sheets, electrostatic interactions between
residues with different charges, and disulfide bonds between cysteine residues. Con-
sistent with there being a multifactorial basis, the folding times of most proteins are
quite resilient to sequence changes, with random mutagenesis (sometimes involving
multiple residues) generally causing no more than a ten-fold increase in the mean
folding time, and as many as half of residue changes causing reduced folding times
(Kim et al. 1998; Plaxco et al. 2000).

Under this general model of folding, the approach to the native state can be
viewed as a series of stochastic samplings of alternative states, with the initial folding
of local domain structures causing a progressive reduction in the multiplicity of
routes to the final native state. Lin and Zewail (2012) go so far as to suggest
that the force resulting from the mere presence of random hydrophobic residues
is generally sufficient to induce a polypeptide chain of < 200 residues to collapse
to a relatively compact form within an appropriate biological time frame. Indeed,
despite the apparent complexity of the process, as a first-order approximation, the
known folding rates of proteins can be explained by knowledge of just the total chain
length (i.e., the number of amino-acid residues, L). At least in the range of L = 20

to 300, there is a dramatic reduction in the spontaneous folding rate (here, given in
units of sec−1) with increasing L, with the function

kf ' (1.1× 108)e−1.3
√
L (12.1)

explaining ∼ 78% of the variance in the folding rate (kf ) among proteins (Dill et
al. 2011). Over an order of magnitude increase in chain length, kf declines ap-
proximately seven orders of magnitude from 3× 104 to 2× 10−3 sec−1 (Figure 12.5).
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Notably, the protein-folding rates used to derive this formula have been almost uni-
versally estimated with in vitro methods. This raises concerns because the macro-
molecular crowding within cells (Dhar et al. 2010) and the attachment of nascent
chains to the ribosome during translation (Kaiser et al. 2011) can modulate fold-
ing by reducing the formation of inappropriate folds. Unfortunately, the technical
difficulty of quantifying protein assembly in vivo remains formidable.

Numerous attempts have been made to improve the accuracy of prediction of
folding rates by incorporating additional information. For example, Ivankov and
Finkelstein (2004) suggested a refinement that subtracts the subsets of residues
incorporated into α helices from L. However, the resultant regression yields only
a marginal improvement over the preceding expression with the added expense of
requiring a detailed understanding of the protein’s secondary structure. Incorpora-
tion of further information on secondary structure, amino-acid composition, and/or
the number of chain contacts has little added effect on the accuracy of predic-
tion (Grantcharova et al. 2001; Ivankov and Finkelstein 2004; Prabhu and Bhuyan
2006; Galzitskaya 2008; Huang et al. 2012), and given that kf itself is subject to
measurement error, there may be little room for improvement beyond the pattern
summarized in Equation 12.1.

Finally, it bears emphasizing that although chain length alone is a fairly good
predictor of the folding rate, this need not exclude the importance of other factors,
but simply means that any additional factors must be either tightly correlated with
chain length or of minor significance. In other words, chain length may provide
an overall summary measure with good predictive ability but possibly with little
mechanistic relevance. In addition, not too much should be read into the significance
of the L0.5 scaling in Equation 12.1, as exponents in the range of 0.1 to 0.7 yield fits
that are nearly equally as good.

How many contortions might a protein go through en route to achieving a proper
fold? Because the mean time for a chain to switch from one configuration to another
is estimated to be ' 10−9 sec (Zana 1975), taking the reciprocal of Equation 12.1 as

the approximate mean time to complete a search, ' 10−8e
√
L, the average number

of configurations sampled prior to finding the proper fold solution is ' 10e
√
L. For

L = 200, this implies an average of 13 × 106 configurations searched in a time span
of ∼ 0.013 sec. For L = 300, this jumps to ∼ 33 × 107 configurations searched
over 0.33 sec, and with L = 500 to ∼ 51 × 109 searches over 51 sec. This implies
that beyond chain lengths of 200 to 300 residues, unassisted folding times rapidly
approach biologically unrealistic levels, a point to which we will return to in Chapter
14. Thus, it may not be a coincidence that protein domains exceeding 300 residues
in length are rare (Wheelan et al. 2000; Wang et al. 2011; Lin and Zewall 2012), and
that average lengths of entire proteins are commonly on the order of 300 residues in
most species.

To what extent do observed folding rates approach the maximum rates possi-
ble from the standpoint of biophysical limitations? Following the suggestion that
an upper bound to the rate of folding of a single-domain protein ' (108/L) sec−1

(Kubelka et al. 2004), by comparison with Equation 12.1, it can be seen that empiri-
cally observed folding rates are typically far below the maximum. For example, for a
100-residue protein, the maximum folding rate is predicted to be ' 106/sec, whereas
Equation 12.1 implies an average observed rate of only 249/sec. Even the most
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rapidly folding proteins do so one to two orders of magnitude more slowly than this
proposed protein-folding speed limit (Kubelka et al. 2004). Thus, it appears that
natural selection has generally been unable to achieve perfection in folding rates.

Does the level of refinement of folding rates vary among species? Although
an ideal comparison of orthologous proteins in different phylogenetic lineages has
not been performed, it has been argued that proteins of equivalent length fold at
least ten times more rapidly in bacteria than in eukaryotes (Galzitskaya et al. 2011).
Proteins also tend to be longer in eukaryotes than in prokaryotes, which will further
exacerbate the protein-folding challenges in the former group. In one of the only
comparative studies of protein-folding pathways, Lim et al. (2018; Lim and Marqusee
2018) found for the protein ribonuclease H that although different bacterial lineages
use the same type of folding intermediate, the pathways to get there differ; and
another study of a protease revealed dramatic differences in the folding mechanism
(Nixon et al. 2021). Thus, even within bacteria, there are apparently evolutionary
paths open to divergence of folding mechanisms without compromising folding rate.

Stability of folding. As with protein folding rates, folding stability (the tendency
to remain folded after achieving the native state) is largely a function of the total
chain length, with additional information on sequence and secondary structure again
not greatly improving predictability (Robertson and Murphy 1997; Ghosh and Dill
2009; Khan and Vihinen 2010; Dill et al. 2011; Jarzab et al. 2020). The diverse
mechanisms by which stability is achieved include packing effects of hydrophobic
residues, backbone hydrogen bonds, and favorable electrostatic interactions (Miller
et al. 2010). Thus, not surprisingly, protein folding rates and stability are not inde-
pendent attributes (Plaxco et al. 2000; Sato et al. 2001). Proteins that fold rapidly
are often also quite stable, but conflicts can also exist. For example, whereas pro-
teins are positively selected to fold into their proper native states, negative selection
may operate to avoid folding too rapidly and/or too stably into misfolded states.
Random mutagenesis with a model protein demonstrated that although a substan-
tial fraction of mutations result in faster folding times, nearly all of these have the
side effect of reducing stability, suggesting that natural selection places a premium
on the latter (Kim et al. 1998).

Indirect evidence supports the idea that selection on folding stability plays a
central role in amino-acid sequence evolution. For example, there is a strong cor-
relation between the thermostability of individual proteins and the optimal growth
temperature of bacterial species, and random amino-acid substitutions in protein
cores are more deleterious than those for surface residues (Dehouck et al. 2008; Tri-
pathi et al. 2016; Jarzab et al. 2020). In particular, the total usage of seven amino
acids – four hydrophobic (Ile, Val, Trp, and Leu), one polar (Tyr), and two charged
(Arg and Glu) – is highly correlated with optimal growth temperature (Zeldovich et
al. 2007). The usage of this particular mix of residues has been proposed to repre-
sent a compromise between the conflicting challenges of folding rapidly and avoiding
stable misfolded configurations (Berezovsky et al. 2007). Under this hypothesis, the
reduced incidence of these seven residues at lower temperatures is viewed as a by-
product of the relaxed intensity of selection on folding mechanisms in less extreme
thermal backgrounds.

Protein stability is deemed to be positively associated with fitness in the sense
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that destabilized proteins are prone to loss of function, aggregation, and/or direct
toxicity. Nonetheless, most proteins sit on the “margin of stability” in the sense that
only one or two mutations are often sufficient to induce complete loss of stability.
Although it is commonly argued that marginal stability is required for proper protein
function, with excess stability somehow reducing protein performance, this has not
held up to close scrutiny. It is relatively easy to create more stable proteins by
mutagenesis (Matsuura et al. 1999; Bershtein et al. 2013; Sullivan et al. 2012), and
the individual residues contributing to stability typically interact in an additive
fashion (Wells 1990; Serrano et al. 1993; Zhang et al. 1995). Numerous proteins
have been engineered to have increased stability with few, if any, consequences for
enzyme efficiency (e.g., Giver et al. 1998; van den Berg et al. 1998; Taverna and
Goldstein 2002; Borgo and Havranek 2012; Moon et al. 2014). Indeed, when wide
phylogenetic comparisons are used to generate consensus sequences of proteins, the
resultant synthesized peptides are commonly more stable than the extant proteins,
each of which has a subset of the overall stabilizing consensus residues (Sternke et
al. 2019).

An alternative explanation for all of these observations is that marginal stability
evolves as a simple consequence of the diminishing benefits of increased stability.
This would be the case, for example, if fitness is a hyperbolic function of the en-
ergy associated with the forces holding a protein together (Govindarajan and Gold-
stein 1997; Taverna and Goldstein 2002; Bloom et al. 2005; Wylie and Shakhnovich
2011; Serohijos and Shakhnovich 2014). Under this model, proteins are expected
to be pushed by natural selection to more stable configurations until reaching the
point where any further fitness improvement is small enough to be offset by the
vagaries of random genetic drift and/or mutation pressure towards less stable states
(the drift barrier; Chapter 5). In essence, under any particular population genetic-
environment, a quasi-steady-state distribution of stability is expected to evolve to
the point at which the rates of fixation of beneficial and deleterious mutations are
equal (Figure 12.6). The overall prediction of this hypothesis is that the mean
folding stability of proteins will evolve to higher values in populations with larger
effective population sizes. This same hypothesis may explain the higher folding rates
in prokaryotes than in eukaryotes noted above.

A more mechanistic view of these issues can be acquired by considering the
typical features of evolved proteins. The folding stability of proteins is often on the
order of ∆G = −3 to −20 kcal/mol (Plaxco et al. 2000; Dill et al. 2011). To put this
in perspective, the average energy associated with single hydrogen bonds in peptides
is thought to be on the order of −2 kcal/mol (Sheu et al. 2003; Wendler et al. 2010).
With the expected fraction of folded proteins being ' e−∆G/RT /(1 + e−∆G/RT ) at
thermodynamic equilibrium, where RT ' 0.6 kcal/mol, a protein with ∆G = −3

is expected to be folded > 99% of the time. This diminishes to 96.5 and 84% for
∆G = −2 and −1, respectively.

A survey of experimental assays of mutational effects suggests an average ∆∆G '
0.6 kcal/mol (SD = 1.1) associated with individual surface residues, and higher
destabilizing effects (1.4 kcal/mol; SD = 1.7) for core residues. The distributions of
both kinds of effects are roughly normal (bell-shaped; Figure 12.7), so the overall
distribution of site-specific effects for an entire protein is essentially a mixture of
normals. Because smaller proteins have a higher fraction of surface residues, the
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average ∆∆G is expected to be smaller.

If the drift-barrier hypothesis is indeed the explanation for the evolution of
marginal stability, the distribution of ∆∆G values seen in such surveys must reflect
the natural outcome of the joint forces of mutation, selection, and drift in position-
ing a population on the fitness-stability landscape (Wylie and Shakhnovich 2011).
Unfortunately, as in most areas of cell biology, there are few comparative studies
bearing on this issue. However, an in vitro evaluation of the folding stability of
the dihydrofolate reductase enzyme from 36 species of mesophilic bacteria revealed
a substantial range of variation among species, with the standard deviation being
roughly 10% of the mean (Figure 12.8).

Determinants of Protein-sequence Evolution

There can be substantial variation in the evolutionary rates of substitution among
amino-acid sites within a given protein. Not surprisingly, positions involved in cat-
alytic sites are generally under strong purifying selection, and as a consequence,
proteins often retain the ability to function appropriately in foreign cellular back-
grounds after very long periods of evolutionary divergence. For example, a survey
of the performance of over 400 different human proteins in yeast (lineages that sepa-
rated over a billion years ago) revealed that nearly half were able to complement the
absence of the native yeast gene (Kachroo et al. 2015). Similar results were obtained
when bacterial genes were substituted for their orthologs in yeast (Kachroo et al.
2017). Remarkably, however, although between 60 and 90% of genes involved in
various aspects of metabolism were able to complement (∼ 50% of genes involved in
transcription, ∼ 65% involved in DNA replication and repair), nearly all involved in
cell growth were unable to complement. Thus, proteins whose functions are closely
related to fitness need not remain highly conserved at the protein-sequence level.
Here, we explore a wide range of issues bearing on the mechanisms responsible for
the substantial evolutionary-rate variation that exists among proteins and among
sites within them.

Lessons from phylogenetic comparisons. Comparisons of the sequences of
orthologous protein-coding genes over a diversity of species have left little doubt
that amino-acid sequences undergo slow but relentless change over evolutionary
time. Not all amino-acid substitutions are acceptable in all contexts, and there
is substantial variation in evolutionary rates among different proteins and different
phylogenetic lineages, but only a tiny fraction of amino-acid sites are invariant across
the entire Tree of Life.

The most common approach to estimating protein evolutionary rates starts at
the level of DNA-sequence analysis, and compares the rates of nucleotide substi-
tution at amino-acid replacement and silent sites where, respectively, nucleotide
substitutions do or do not elicit a change at the amino-acid level. Owing to the
nature of the genetic code, ∼ 25% of nucleotide sites in a protein-coding gene are
typically silent. For example, third-positions in codons for the eight amino acids for
which A, C, G, or T lead to the same residue (Figure 12.1) are referred to as four-fold
redundant sites. The usual assumption is that such sites evolve in a neutral fashion,
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owing to their invisibility at the amino-acid level. If this is the case, then the rate
of nucleotide substitution (i.e., the rate at which one nucleotide type is displaced
by another at the population level) at silent sites is expected to equal the mutation
rate per site per generation (u) in accordance with the neutral theory (Chapter 4).
The total expected silent-site divergence between two lineages separated by t time
units (in this case, generations) would then be 2tu mutational changes per site, the
2 appearing because mutations accumulate independently down each lineage.

Having such a benchmark of neutral divergence is informative, as it provides
a means for interpreting rates of amino-acid substitution, most notably factoring
out the contribution of mutation pressure from that associated with selection. If
substitutions at replacement sites are selected against, which is generally the case
(Kimura 1983; Nei and Kumar 2000; Yang 2014), their rate of divergence should
be lower than the expected neutral benchmark. Letting φf be the probability of
fixation of a newly arisen replacement mutation, the rate of divergence at such sites
has expectation 2t·(2Nu)·φf , where N is the absolute population size, and 2Nu is the
rate at which mutations arise within each population (assumed to be diploid) per
nucleotide site. If mutations at replacement sites are neutral, the fixation probability
is simply equal to the initial frequency of a mutation, 1/(2N), and the overall amount
of divergence is equal to the neutral expectation given above, 2tu.

Generally, we do not have an accurate measurement of the divergence time t

between two species, nor of the mutation rate u. However, if one simply takes the
ratio of the observed divergences at replacement and silent sites (denoted dN and
dS, respectively, with the N referring to nonsynonymous or amino-acid replacement
sites), the resultant ratio has expectation [2t · (2Nu) · φf ]/(2tu) = 2N · φf , assuming
silent sites do indeed evolve in a neutral fashion. When rewritten as φf/[1/(2N)],
this ratio is seen to be equivalent to the fixation probability at replacement sites
relative to the neutral expectation. Thus, under appropriate conditions, dN/dS
provides a biologically interpretable measure of the degree of selective constraint on
a protein-coding gene. Assuming that the majority of mutations are either neutral
or deleterious, dN/dS is equivalent to the fraction of amino-acid altering mutations
that evade the eyes of natural selection, and for that reason is sometimes referred
to as the width of the selective sieve.

There are many caveats with respect to this sort of analysis. First, it is assumed
that silent sites are neutral, whereas we know that these can experience some se-
lection at various levels from, for example, preferential tRNA recognition of certain
nucleotides in third positions, mRNA structural constraints, and influence of trans-
lation speed on folding efficiency (Sharp et al. 2005; Zhou et al. 2010; Lawrie et
al. 2013; Long et al. 2018; Walsh et al. 2020). Second, dN is generally measured
as an average over multiple sites within a gene, obscuring the fact that although
many substitutions can be strongly selected against, a minority may nonetheless
be advanced by positive selection. Third, there is the difficult matter of accurately
estimating dN and dS from highly divergent sequences, as multiple substitutions at
individual sites will lead to an undercounting of the actual numbers of changes that
have accrued, especially at more rapidly evolving silent sites.

These and many other matters have been taken up in detail in the technical field
of DNA-sequence analysis, but justified or not, the dN/dS ratio remains a central
parameter determined in almost all molecular-evolution studies. With few excep-
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tions, proteome-wide studies involving dN/dS between moderately related species
yield average ratios on the order of 0.05 to 0.25 (Kuo et al. 2009; Stanley and
Kulathinal 2016; Lynch et al. 2017). This implies that on average only 5 to 25%
of amino-acid alterations of proteins are typically acceptable in nature. There is,
however, a wide range of variation among proteins and among species. Given the
possibility of selection on silent sites, especially in large-Ne species, such differences
also need to be cautiously interpreted as implying lineage-specific differences in the
efficiency of natural selection. Moreover, dN/dS analyses leave unresolved the degree
to which neutral vs. beneficial nonsynonymous mutations contribute to the pool of
fixed amino-acid replacement substitutions.

Comparative analyses have led to a number of other general observations that
leave little doubt that the majority of amino-acid altering mutations are removed
by purifying selection in nature. First, most amino-acid substitutions that do occur
involve exchanges of amino acids with similar chemical properties, with radical ex-
changes being more common in low-Ne species with reduced efficiency of selection
(Bergman and Eyre-Walker 2019; Weber and Whelan 2019). Second, there is a pre-
mium on the use of amino acids with relatively low biosynthetic costs, conditional
on maintaining a level of residue diversity necessary for maintaining stable and func-
tional proteins (Krick et al. 2014; Venev and Zeldovich 2018). Third, substitution
rates are higher for residues on protein surfaces than for those in hydrophobic cores
(Suckow et al. 1996; Goldman et al. 1998; Bustamente et al. 2000; Ramsey et al.
2011; Roscoe et al. 2013; Firnberg et al. 2014; Sarkisyan et al. 2016; Moutinho et
al. 2019). Fourth, membrane proteins exposed to the external environments evolve
relatively rapidly, perhaps in response to adaptive challenges, compared to cytosolic
proteins confined to the more homeostatic internal cellular environment (Sojo et al.
2016).

Observations from experimental mutagenesis. As an alternative to deriving
indirect inferences from long diverged sequences, the degree of constraint on protein
sequences can be directly evaluated by comparing the performance of randomly
mutagenized sequences. However, although such an approach has the advantage of
avoiding problems of sequence saturation, silent-site selection, etc., it has the strong
limitation of only being able to identify residue changes with major effects. The
central issue here is that selection in nature is capable of eradicating deleterious
mutations with selective disadvantages down to order 1/Ne, where Ne (the effective
population size) is typically in the range of 104 to 109 (Chapter 4), whereas lab
experiments are generally unable to detect deleterious mutations with fitness effects
smaller than 10−3. Thus, random mutagenesis experiments invariably underestimate
the fraction of amino-acid substitutions that are eliminated by purifying selection
in nature.

This being said, such experiments have been illuminating in a number of ways.
For example, Yampolsky and Stoltzfus (2005) summarized the relative exchange-
abilities of amino-acid pairs observed in such studies. Hydrophobic residues tend
to be most substitutable with other hydrophobic residues, and hydrophilic residues
with each other, whereas exchanges between these two extreme groups tend to be
unacceptable.

The protein most extensively studied in this way is β-lactamase, a bacterial
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protein that hydrolyzes antibiotics such as penicillin. The functional consequences
of every possible amino-acid substitution at every position in β-lactamase have been
characterized (Deng et al. 2012; Jacquier et al. 2013; Firnberg et al. 2014). In
agreement with evolutionary divergence data, this work reveals that the number of
acceptable amino acids (out of 20) at individual sites is frequently below 15 (and
often much lower), with surface residues being generally being more receptive to
change (Figure 12.9). However, a number of surface positions far from the active site
are highly sensitive to mutations, ruling out the generality that all surface residues
are under relatively relaxed selection. Several residues can be altered in ways that
increase molecular stability, and the overall distribution of effects is bimodal, with
most acceptable variants having functionality just slightly below the norm and a
small fraction being nonfunctional (Figure 12.10).

Surprisingly, a number of sites that are known to vary among β-lactamase se-
quences from natural isolates are intolerant to amino-acid substitutions, an ob-
servation that has been seen in other proteins (Mishra et al. 2016). This raises
questions about the common assumption that sites with high natural levels of vari-
ability experience low functional constraints. It also suggests the importance of
context dependence (Chapter 5), with certain sites being more or less accepting of
alterations depending on the state of other sites within the protein (Bershtein et
al. 2006; Salverda et al. 2011), a point to which we will return to below. A strong
role for contingency is implicated from the observation that when mutations at two
sites that are acceptably exchangeable on their own are combined in this protein,
they commonly lead to nonfunctional molecules (Axe 2000). Moreover, chimeric
molecules obtained by splicing together halves of different natural variants are com-
pletely nonfunctional (Axe 2000).

Assays from random mutagenesis experiments with numerous other proteins are
in general agreement with the preceding results. For example, Guo et al. (2004) ex-
amined the performance of ∼ 105 single amino-acid substitutions in 3-methyladenine
DNA glycosylase, a DNA repair enzyme in humans, and found that 34% of exchanges
led to enzyme inactivation; substitutions in α-helices were about twice as exchange-
able as those in β-strands (as seen in other studies; Silverman et al. 2001; Firnberg et
al. 2014), and those in turns and loops were still more acceptable. Similar analyses
with different proteins have yielded estimates of 30 to 80% for fractions of nonfunc-
tionalizing mutations (Guo et al. 2004; Axe et al. 1996; Materon and Palzkill 2001).
Again, although the definition of nonfunctional varies among studies (with most
incapacitated enzymes actually retaining at least a small amount of functionality),
owing to measurement limitations, all such studies must greatly underestimate the
total fraction of mutations that would be removed by purifying selection in nature.

From an evolutionary standpoint, it is more desirable to know the net conse-
quences of mutations not simply for molecular function but for overall organismal
fitness, and to have such measurements on a continuous rather than a yes/no scale
with an arbitrary cutoff. Although the data are more limited here, when available
they generally point in the same direction. For example, in the case of β-lactamase,
the distribution of fitness effects for single amino-acid substitutions has a mode near
zero, with a small fraction being favorable, and a long tail to the left (denoting dele-
terious effects), with ∼ 40% of these having selection coefficients 0 < s < 0.1, and
only ∼ 6% completely obliterating enzyme function (Figure 12.10).
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Direct fitness assays of random mutations in other genes are generally consis-
tent with the observations for β-lactamase (Figure 12.10; see also Roscoe et al. 2013;
Lind et al. 2016; Sarkisyan et al. 2016; Lundin et al. 2018). Typically, the main peak
in the distribution of fitness effects is near zero, with only a small fraction of mu-
tations improving fitness, the majority reducing fitness by no more than 10% (on
average just 1%), and with a secondary peak associated with mutations lacking en-
tirely in activity. Notably, in a number of cases, a few silent-site substitutions have
discernible negative effects, implying effects on transcription, translation, and/or
folding efficiency. Ribosomal protein genes are particularly pronounced in this re-
gard, having similar distributions of fitness effects for both silent and replacement
substitutions (Figure 12.10).

Expression level and the propensity for sequence change. It has long been
thought that the evolutionary rate of a protein is inversely related to its func-
tional significance – the higher the relevance to fitness, the lower the acceptability
of amino-acid changes. However, there is no formal way to rank functional signifi-
cance, and simply invoking low dN/dS introduces a circularity. To avoid falling into
this seductive trap, an exploration of alternative explanations is warranted.

As noted above, residues buried within a protein generally evolve at substan-
tially lower rates than those exposed on protein surfaces. Buried polar residues
involved in hydrogen bonding are especially conserved, although the constraint on
molecular evolution declines with increasingly large internal cores of proteins, pre-
sumably because stability is distributed across more residues (Franzosa and Xia
2009; Worth and Blundell 2009, 2010). Proteins with especially low rates of sub-
stitution for surface residues have even more exceptionally low rates for the core
residues, leading to the suggestion that alterations in surface residues facilitate the
acceptance of mutations in the core (Toth-Petrósky and Tawfik 2011). However,
it remains unclear whether this is a causal relationship or simply a consequence of
some proteins being under greater overall constraint at all positions.

Although a plausible argument for reduced rates of evolution in core positions
is the intimate involvement of backbone hydrogen bonds and hydrophobic effects
in the maintenance of folding stability, the actual mechanisms may be more com-
plicated, as other features are correlated with interior vs. exterior residues. For
example, the tendency to engage in unproductive aggregations with other proteins
is a function of surface residues, and amino-acid substitutions in such regions might
sometimes even be driven by positive selection to avoid aggregation (Wright et al.
2005). Moreover, the relative packing density of residues is strongly correlated with
solvent accessibility, and when these two are jointly controlled for in a multiple re-
gression, the former accounts for more of the variance in evolutionary rate than the
latter (Toft and Fares 2010; Yeh et al. 2014).

These observations on the consequences of mutations for protein stability and
adhesivity help explain a general observation on relative rates of protein evolution.
As noted above, it was long thought that variation in evolutionary rates would be
dictated by the functional significance of a protein, but as single-gene knockout
studies raised questions about this interpretation, it became clear that the best
evolutionary-rate predictor is the expression level of a protein (Pál et al. 2001;
Zhang and Yang 2015).
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One interpretation of this pattern invokes the idea that natural selection oper-
ates to minimize the likelihood of improper folding and of instability once properly
folded (Serohijos et al. 2012). This idea is further motivated by the suspicion that
misfolded proteins commonly arise as a consequence of erroneous protein sequences
resulting from transcriptional or translational errors (Drummond and Wilke 2008;
Yang et al. 2010). That the latter is a significant challenge is made plausible by the
fact that proteins with low amino-acid substitution rates also have low substitution
rates at silent sites, which might reflect selection to avoid amino-acid misloading by
noncognate transfer RNAs at nonoptimal codons (Chapter 20). The fact that most
mutations influencing protein performance do so by eliciting changes in protein fold-
ing and stability rather than by directly compromising the catalytic core provides
further support for the misfolding hypothesis (Bloom et al. 2007; Shi et al. 2012).
Under this view, the consequences of misfolding are more significant in an abundant
protein simply because the absolute number of problematical molecules is greater.

There are, however, alternative (and not necessarily mutually exclusive) expla-
nations for low rates of evolution in highly expressed protein-coding genes. For
example, the misinteraction hypothesis postulates purifying selection for surface
residues that avoid promiscuous interactions/aggregations with inappropriate pro-
teins (Levy et al. 2012; Yang et al. 2012). With a focus on surface residues, this
explanation differs from the emphasis of the misfolding hypothesis on the importance
of protein-core residues to folding and stability. That inappropriate protein-protein
interactions are a nontrivial selective challenge is highlighted by the fact that ∼ 20%
of protein molecules are typically bound with nonspecific partners in yeast and
metazoan cells (Zhang et al. 2008).

Under the misinteraction hypothesis, the efficiency of selection against amino-
acid substitutions in surface residues is again expected to be especially elevated
in more highly expressed proteins. Thus, it is of interest that in E. coli, the more
abundant proteins have a lower tendency to aggregate (de Groot and Ventura 2010),
apparently because of their reduced surface hydrophobicity (Ishihama et al. 2008).
The same is true for human proteins (Tartaglia et al. 2007).

To investigate this idea further, Levy et al. (2012) ordered the full set of amino
acids with respect to their tendency to adhere to other molecules, using information
on their degree of participation in natural interfaces. They found a negative corre-
lation between a protein’s cellular abundance and the predicted adhesiveness of its
surface. This effect diminishes from E. coli to yeast to human, consistent with an
expected reduction in the efficiency of selection against mildly deleterious mutations
in species with reduced effective population sizes. Notably, in bacteria, the disparity
in evolutionary rates between highly and lowly expressed genes is greatest in species
with rapid cell-division rates (Vieira-Silva et al. 2011), which might reflect the latter
species having larger effective population sizes and hence a higher level of efficiency
of natural selection.

Mutation pressure and biased amino-acid usage. The particular amino acids
deployed within a protein need not simply be outcomes of selection. As discussed
in Chapter 5, the likelihood of occupancy of any position within a protein by a
particular residue is a joint function of the mutation biases involving individual
allelic variants and the ratio of the power of selection to drift. To understand the
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relative roles of these two determinants, it is necessary to consider why genome-wide
G+C nucleotide compositions range from ∼ 0.25 to ∼ 0.80 among different species
(Lynch 2007), and whether such biases have cascading effects on encoded amino-acid
composition.

If genomic G+C composition reflects the prevailing pressure of mutation, it
ought to be correlated with the expectations based on known mutational spectra,
as recorded in mutation-accumulation experiments (Long et al. 2018). Letting u be
the mutation pressure of A+T nucleotides to C+G, and v be the reciprocal rate,
the expected equilibrium frequency of G+C under mutation pressure alone is sim-
ply u/(u+ v). Across the Tree of Life, average genome-wide G+C compositions are
indeed strongly correlated with this neutral expectation (Figure 12.11). Nonethe-
less, despite the positive correlation, almost all genomes also have an excess G+C
content relative to the neutral expectation. Notably, the deviations of G+C compo-
sition from the neutral expectations are particularly large at silent sites, supporting
the idea that contrary to popular belief, such sites do not generally evolve in a
neutral fashion. The general interpretation of these results is that whereas there is
biased mutation pressure towards A+T content in most species (most neutral G+C
expectations being < 0.5), there is near universal selection for G+C.

For the organisms in Figure 12.11, the ratio of mutation rates from G+C→ A+T
to the reverse ranges from 16 (very low G/C-content genomes) to 0.4 (moderately
high G/C-content genomes). The mechanisms driving such vastly different mutation
spectra remain unclear. One suggestion is that nucleotide-composition bias is a
product of lineage-specific selection pressures, e.g., to generate base compositions
conducive to producing the amino-acid compositions of proteins most compatible
with the challenges of specific environments (Mendez et al. 2010). However, as
noted in Chapter 4, explaining phylogenetic variation in the mutation rate itself
with optimization arguments has not been successful, and explanations for a fine-
tuning of the molecular spectrum are even more challenging. There is no direct
evidence that mutation spectra are driven by selection, and the possibility that the
substantial level of divergence may have been governed largely by effectively neutral
processes cannot be ruled out (Haywood-Farmer and Otto 2003). Selection operates
on the genome-wide mutation rate, driving this down to some level beyond which
further advantages are offset by the power of random genetic drift, but conditional
on any particular overall rate, the mutational spectrum may be free to wander over
evolutionary time.

Why is there near-universal selection for G+C composition, regardless of the
magnitude of mutation pressure towards A+T? The bioenergetic costs of all four
nucleotides are very similar (Chapter 17), so selective discrimination on this ba-
sis is unlikely. High-temperature environments might impose selection for higher
G+C composition because G:C pairs involve three hydrogen bonds (as opposed to
two for A:T), rendering a higher degree of DNA (and RNA) stability (Musto et al.
2004; Basak and Ghosh 2005). However, although there are correlations between
G+C content and optimal growth temperatures within narrow phylogenetic groups
of bacteria, this is not true on a broader phylogenetic scale. Moreover, the G+C
composition of silent sites does not exhibit such correlations, contrary to expec-
tations if there is genome-wide selection for duplex stability (Hurst and Merchant
2001). Adenine and guanine (purine) nucleotides contain three more nitrogen atoms
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than do pyrimidines, so long-term residence in nitrogen limiting environments might
select for genomes enriched with Cs and Ts (Rocha and Danchin 2002; Luo et al.
2015), but as DNA consists of A:T and G:C bonds, such selection would have to
occur at the strand-specific RNA level and also be efficient enough to discriminate
a difference of two nitrogen atoms against a total-cell backdrop of billions of these.
Finally, gene conversion (a local product of recombination between two nonidentical
sequences; Chapter 4) is thought to be weakly biased towards Cs and Gs (when
mismatches with As and Ts arise) across the Tree of Life (Lassalle et al. 2015),
providing still another pressure on nucleotide composition, depending on the level
of recombination.

Regardless of the mechanisms driving genome-wide nucleotide composition, the
central question here is whether such biases have repercussions at the level of amino-
acid composition across phylogenetic lineages. Owing to the structure of the genetic
code, the codons for some amino acids are much richer in GC content than oth-
ers (Figure 12.1); e.g., 83% for alanine, arginine, glycine, and proline, but ≤ 17%

for asparagine, isoleucine, lysine, phenylalanine, and tyrosine. Thus, we wish to
know whether certain population-genetic environments promote the use of particu-
lar amino acids independent of their immediate functional significance.

From Figure 12.11, this can be seen to be the case – species with very strong
mutation pressure towards A+T also gravitate to codons with high A+T compo-
sition. Among species, genome-wide G+C content at first and second positions of
codons (which mostly consist of amino-acid replacement sites) is correlated with
that at third positions (which are largely silent sites) (Gu et al. 1998; D’Onofrio
et al. 1999; Bastolla et al. 2004; Chen et al. 2004). Moreover, the proteome-wide
usage of amino acids with GC-rich codons in different species more than doubles
across the range of genome-wide GC composition at silent sites, whereas that of the
AT-rich group declines by more than 50% (Knight et al. 2001; Li et al. 2015). Thus,
although there is strong selection for amino-acid composition at key sites within
most proteins, it appears that mutation pressure is frequently sufficient to overcome
the weak selection for amino-acid usage in a substantial fraction of less functionally
significant sites.

These observations are of relevance to the question as to whether isolated lin-
eages evolve completely independently at the molecular level. When two separate
lineages independently acquire the same novel phenotype from the same starting
state, the change is said to be parallel, whereas independent acquisition of the same
state from different initial conditions represents convergent evolution (Zhang and
Kumar 1997; Storz 2016).

Evolutionary substitutions of certain types of amino acids at particular sites
within proteins occur more frequently than expected by chance (e.g., Bazykin et
al. 2007; Rokas and Carroll 2008; Elias and Tawfik 2012; Ayuso-Fernández et al.
2018; Cano et al. 2022), and there is little question that lineages do occasionally
respond to the same selective challenge in parallel manners. A dramatic example
was revealed in replicated E. coli populations exposed to an increasing gradient of
the antibiotic trimethoprim, which exhibited a similar temporal ordering of muta-
tions conferring resistance in the dihydrofolate reductase gene (Toprak et al. 2011).
However, demonstrating that convergent/parallel evolution is an outcome of shared
selective pressures is difficult without rigorous statistical and/or empirical analy-
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sis, and numerous examples exist in which parallel evolution has inspired arguments
about the channeling of molecular adaptations, only to be overturned by subsequent
evaluation (Storz 2016).

This being said, it has been consistently observed that, relative to the neutral
expectation, the incidence of amino-acid convergence events becomes progressively
less common with more distantly related lineages (Goldstein et al. 2015; Shah et al.
2015; Zou and Zhang 2015). A compelling explanation for such behavior is that as a
protein accepts amino-acid changes at a variety of sites in different lineages, the local
selective environments at other sites are altered, thereby diminishing the likelihood
of effectively neutral mutations being channeled to the same set of residues. Such
a model implies a predominance of both effectively neutral substitutions (allowing
change to occur at individual sites) and of epistasis (interaction effects between
individual sites).

Epistasis and compensatory mutation. The preceding sections provided nu-
merous examples in which the effects of mutations in protein-coding sequences are
epistatic with respect to fitness. That is, the fitness effects of individual mutations
often depend on local context. Direct evidence for such interactions derives from
experimental mutagenesis experiments, such as that of Bank et al. (2015), who in
an analysis of > 1000 double mutants in the binding domain of a yeast heat-shock
protein found a preponderance of pairs with negative combined effects on fitness (be-
yond the additive expectations based on single-mutational effects). In that study,
very few pairs exhibited positive epistatic effects.

In a somewhat different study, Lunzer et al. (2010) substituted (one at a time)
168 amino acids in the isopropymalate dehydrogenase protein in E. coli to match the
differences in the orthologous protein in Pseudomonas aeruginosa. On the E. coli
background, 63 of these single substitutions were functionally compromised, whereas
only one had improved performance. In another comparative study, Starr et al.
(2018) reconstructed estimated ancestral states in a yeast heat shock protein (Hsp70)
and then laboriously substituted amino acids from the modern-day sequence into
the ancestral form, and vice versa. Although Hsp70 has retained a highly conserved
function over a billion years of evolution, > 75% of these single-residue exchanges
were deleterious, even though they must have been acceptable over the course of
evolution. All of these observations are consistent with stochastic lineage-specific
additions of mutations conditional upon earlier changes progressively altering the
permissive environment for substitution.

Further indirect evidence for the long-term evolutionary significance of epistasis
derives from a number of different comparative analyses. For example, in a study
of 16 eukaryotic proteins, each with > 1000 sequences available from a wide variety
of phylogenetic lineages, Breen et al. (2012) found that the average amino-acid site
is occupied by just 8 different amino-acids, even though ample evolutionary time
has elapsed for all mutation types to have appeared at each site, i.e., on average
each site can shift to seven alternative amino acids. The authors reasoned that
dN/dS ought to be 7/19 = 0.36 if amino-acid altering mutations accumulate in a
noninteractive way, i.e., 64% of amino-acid replacements would be expected to be
unacceptable. However, the average observed dN/dS ratio (measured from sequence
divergence between species) for these proteins is ∼ 7× lower than this expectation,
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leading to the conclusion that negative epistatic fitness effects must be pervasive
among mutations. The implication is that if a particular amino-acid fixes at one
particular site, it creates a local environmental shift within the protein that prevents
the fixation of the majority of amino-acid altering mutations at other sites, leaving an
average of only ∼ 1 permissible change per site at any particular point in evolutionary
time.

A second compelling line of evidence for the role of epistasis in protein evolu-
tion derives from the observation that many amino-acid changes that cause human
pathologies (and are therefore rare in the human population) are nonetheless well-
established (with no pathogenic effects) in other mammalian species (Kondrashov
et al. 2002; Gao and Zhang 2003). Very similar observations have been made with
mutations known to be pathogenic in Drosophila, but established in other insect
species (Kulathinal et al. 2004). As the frequency of such compensated deviations
does not increase with the evolutionary distance of a lineage, this suggests that they
accrue relatively rapidly, rather than awaiting long-term protein remodeling. The
effects of such mutations must be context dependent.

Finally, it has been noted that amino-acid changes in proteins tend to be clus-
tered within a sequence, generally on a chain-length scale of < 10 residues, and also
tend to preserve the local charge of the protein (Callahan et al. 2011). Notably,
the average physical distance between central carbon atoms of amino acids in folded
proteins plateaus at chain distances than > 10 residues, implying that on average
residues separated by < 10 positions have a high likelihood of physical interaction.
The fact that silent-site substitutions are not clustered argues against the pattern
being a result of regional mutational hot spots. Additional work shows that long-
range epistatic interactions are not uncommon (Sharir-Ivry and Xia 2018).

A General Model for Protein Evolution

A key point emerging from the previous discussion is that, more often than not,
many cumulative amino-acid changes have little impact on the immediate function-
ality of a gene. Rather, much of protein evolution appears to reflect little more
than a restricted random walk down nearly-neutral pathways (Figure 12.12). Some
of these pathways may involve the fixation of effectively neutral but slightly dele-
terious mutations (as outlined in Chapter 5), which then allow the fixation of a
compensatory mutation that was insignificantly favorable (or even deleterious) on
the prior ancestral background but now more favorable in its new context. Such
compensatory changes are not necessarily epistatic with respect to the long-term en-
hancement of total fitness, although they are epistatic with respect to the physical
structure of the protein.

Thus, an emerging view of protein-sequence evolution is that at any point in
time the number of degrees of freedom for change at individual amino-acid sites
is small, with the identities of exchangeable amino acids shifting with fortuitous
prior fixations elsewhere in the molecule (Goldstein and Pollock 2017; Xie et al.
2021; Park et al. 2022). In part, restricted sequence walks are governed by the
nature of the genetic code, as single mutations at each replacement nucleotide site
can generate at most three alternative amino acids. More generally, however, the
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structural environment of the protein itself will dictate the subset of permissible
(effectively neutral) amino-acid exchanges. Over time, slight shifts in the amino-
acid constitution of the protein, each nearly neutral incrementally, alter the local
protein-structural environment, further restricting the degrees of freedom for future
changes, but in a progressively divergent way, allowing the long-term degrees of
freedom for change at a large fraction of sites to wander to levels as high as 19.

Such cycles of modification of the background environment, and subsequent
channeling of permissible mutations allows for an expansive set of paths open to
evolutionary change across the Tree of Life, while rendering individual lineages vic-
tims of historical contingency. Under this model, because slightly deleterious muta-
tions can sometimes fix, such events also pave the way for the subsequent fixation of
compensatory beneficial mutations without significant consequences for long-term
adaptation in terms of protein function. Moreover, by this cumulative process,
amino-acid changes that were originally effectively neutral may sometimes become
entrenched to the point of being essential to protein functionality and hence nearly
irreversible evolutionarily.

Summary

• Proteins consist of chains of amino acids, generally folded into subunits, such as
helices and sheets, which then further arrange into tertiary structures essential
for function.

• At the dawn of the protein world, only a fraction of the twenty amino acids used in
today’s organisms would have been in play, and other noncanonical amino acids
might have been used. Nonetheless, enormous functional diversity of proteins
can still be generated by a reduced amino-acid alphabet, although an expanded
vocabulary allows for further refinement in catalytic activity and efficiency.

• One of the major challenges of proteins is their initial need to fold into three-
dimensional structures essential for functionality. Although there are a number
of important substructural influences, folding rates are largely determined by
the amino-acid chain length, and those in excess of ∼ 250 residues are generally
incapable of folding on their own on reasonable time scales.

• Despite the high level of refinement, the functionality of proteins has not reached
the limits set by biophysics. Catalytic rates can be improved by the use of non-
canonical amino acids. Folding rates and stability are also less than their max-
imum possible values, and potentially more so in eukaryotes than prokaryotes.
These observations suggest that the efficiency of natural selection is stalled by
either a drift barrier and/or constraints imposed by the restricted set of canonical
amino acids.
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• Based on phylogenetic comparisons of sequence data, only 5 to 25% of amino-acid
altering mutations are acceptable in nature, although experimental substitutions
of random amino acids consistently indicate that most such mutations do not
entirely eliminate protein function. The distribution of fitness effects associated
with amino-acid exchanges generally has a mode not significantly different from
zero, a long tail towards deleterious effects, and only a small tail containing favor-
able changes. Although the overall conclusion is that the majority of mutations
at the protein level are mildly deleterious, the details of the distribution in the
range of very small effects, which is most critical to evolutionary theory, remains
uncertain.

• One of the primary determinants of the rate of evolution of a protein is its level of
expression. This is thought to be a consequence of strong purifying selection for
the maintenance of folding stability to avoid the production of wasted or harmful
by-products and/or selection for surface residues that minimize misinteractions
with other key proteins.

• The magnitude of mutation bias varies widely among phylogenetic lineages, but is
usually in the direction of A and T nucleotides. As a consequence of the structure
of the genetic code, this can sometimes drive the biased deployment of particular
amino acids in the proteome, leading to parallel evolution in different lineages
with little involvement of selection.

• Amino-acid altering mutations frequently have context-dependent fitness effects,
whereby the incorporation of earlier mutations can dictate whether specific sub-
sequent substitutions are deleterious, beneficial, or effectively neutral. As a con-
sequence, the fixation of effectively neutral (but mildly deleterious) mutations
can pave the way for the future fixation of compensatory mutations that other-
wise would not be beneficial. Over time, a series of such subtle remodeling events
can lead to the entrenchment of previously neutral amino-acid substitutions to
the point of becoming near essential to protein functionality. In retrospect, al-
though such progressive changes may appear to involve adaptive fixations and
strong epistatic effects, the entire process may unfold with only minor conse-
quences for overall fitness. This view of protein evolution is entirely compatible
with long-term wandering of amino-acid sequences along the drift barrier.
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Cano, A. V., H. Rozhoňová, A. Stoltzfus, D. M. McCandlish, and J. L. Payne. 2022. Mutation bias

shapes the spectrum of adaptive substitutions. Proc. Natl. Acad. Sci. USA 119: e2119720119.

Chen, S. L., W. Lee, A. K. Hottes, L. Shapiro, and H. H. McAdams. 2004. Codon usage between

genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA 101:

3480-3485.

Davis, B. K. 1999. Evolution of the genetic code. Prog. Biophys. Mol. Biol. 72: 157-243.

de la Torre, D., and J. W. Chin. 2021. Reprogramming the genetic code. Nat. Rev. Genet. 22:

169-184.

de Groot, N. S., and S. Ventura. 2010. Protein aggregation profile of the bacterial cytosol. PLoS

One 5: e9383.

Dehouck, Y., B. Folch, and M. Rooman. 2008. Revisiting the correlation between proteins’ ther-

moresistance and organisms’ thermophilicity. Protein Eng. Des. Sel. 21: 275-278.

Deng, Z., W. Huang, E. Bakkalbasi, N. G. Brown, C. J. Adamski, K. Rice, D. Muzny, R. A. Gibbs,

and T. Palzkill. 2012. Deep sequencing of systematic combinatorial libraries reveals β-lactamase

sequence constraints at high resolution. J. Mol. Biol. 424: 150-167.

Dhar, A., A. Samiotakis, S. Ebbinghaus, L. Nienhaus, D. Homouz, M. Gruebele, and M. S. Cheung.

2010. Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by

macromolecular crowding. Proc. Natl. Acad. Sci. USA 107: 17586-17591.

Dill, K. A., K. Ghosh, and J. D. Schmit. 2011. Physical limits of cells and proteomes. Proc. Natl.

Acad. Sci. USA 108: 17876-17882.

Dill, K. A., and J. L. MacCallum. 2012. The protein-folding problem, 50 years on. Science 338:

1042-1046.

Doi, N., K. Kakukawa, Y. Oishi, and H. Yanagawa. 2005. High solubility of random-sequence

proteins consisting of five kinds of primitive amino acids. Protein Eng. Des. Sel. 18: 279-284.

D’Onofrio, G., K. Jabbari, H. Musto, and G. Bernardi. 1999. The correlation of protein hydropathy

with the base composition of coding sequences. Gene 238: 3-14.

Drummond, D. A., and C. O. Wilke. 2008. Mistranslation-induced protein misfolding as a dominant

constraint on coding-sequence evolution. Cell 134: 341-352.



24 CHAPTER 12

Elias, M., and D. S. Tawfik. 2012. Divergence and convergence in enzyme evolution: parallel

evolution of paraoxonases from quorum-quenching lactonases. J. Biol. Chem. 287: 11-20.

Englander, S. W., and L. Mayne. 2014. The nature of protein folding pathways. Proc. Natl. Acad.

Sci. USA 111: 15873-15880.

Englander, S. W., and L. Mayne. 2017. The case for defined protein folding pathways. Proc. Natl.

Acad. Sci. USA 114: 8253-8258.

Firnberg, E., J. W. Labonte, J. J. Gray, and M. Ostermeier. 2014. A comprehensive, high-resolution

map of a gene’s fitness landscape. Mol. Biol. Evol. 31: 1581-1592.

Franzosa, E. A., and Y. Xia. 2009. Structural determinants of protein evolution are context-

sensitive at the residue level. Mol. Biol. Evol. 26: 2387-2395.

Galzitskaya, O. V., N. S. Bogatyreva, and A. V. Glyakina. 2011. Bacterial proteins fold faster than

eukaryotic proteins with simple folding kinetics. Biochemistry (Mosc.) 76: 225-235.

Galzitskaya, O. V., D. C. Reifsnyder, N. S. Bogatyreva, D. N. Ivankov, and S. O. Garbuzynskiy.

2008. More compact protein globules exhibit slower folding rates. Proteins 70: 329-332.

Gao, L., and J. Zhang. 2003. Why are some human disease-associated mutations fixed in mice?

Trends Genet. 19: 678-681.

Ghosh, K., and K. A. Dill. 2009. Computing protein stabilities from their chain lengths. Proc.

Natl. Acad. Sci. USA 106: 10649-10654.

Giver, L., A. Gershenson, P. O. Freskgard, and F. H. Arnold. 1998. Directed evolution of a

thermostable esterase. Proc. Natl. Acad. Sci. USA 95: 12809-12813.

Go, A., S. Kim, J. Baum, and M. H. Hecht. 2008. Structure and dynamics of de novo proteins

from a designed superfamily of 4-helix bundles. Protein Sci. 17: 821-832.

Goldman, N., J. L. Thorne, and D. T. Jones. 1998. Assessing the impact of secondary structure

and solvent accessibility on protein evolution. Genetics 149: 445-458.

Goldstein, R. A., S. T. Pollard, S. D. Shah, and D. D. Pollock. 2015. Nonadaptive amino acid

convergence rates decrease over time. Mol. Biol. Evol. 32: 1373-1381.

Goldstein, R. A., and D. D. Pollock. 2017. Sequence entropy of folding and the absolute rate of

amino acid substitutions. Nat. Ecol. Evol. 1: 1923-1930.

Govindarajan, S., and R. A. Goldstein. 1997. Evolution of model proteins on a foldability land-

scape. Proteins 29: 461-466.

Grantcharova, V., E. J. Alm, D. Baker, and A. L. Horwich. 2001. Mechanisms of protein folding.

Curr. Opin. Struct. Biol. 11: 70-82.

Gu, X., D. Hewett-Emmett, and W.-H. Li. 1998. Directional mutational pressure affects the amino

acid composition and hydrophobicity of proteins in bacteria. Genetica 102/103: 383-931.

Guo, H. H., J. Choe, and L. A. Loeb. 2004. Protein tolerance to random amino acid change. Proc.

Natl. Acad. Sci. USA 101: 9205-9210.

Harris, J. K., S. T. Kelley, G. B. Spiegelman, and N. R. Pace. 2003. The genetic core of the

universal ancestor. Genome Res. 13: 407-412.

Haywood-Farmer, E., and S. P. Otto. 2003. The evolution of genomic base composition in bacteria.

Evolution 57: 1783-1792.



THE PROTEIN WORLD 25

Higgs, P. G., and R. E. Pudritz. 2009. A thermodynamic basis for prebiotic amino acid synthesis

and the nature of the first genetic code. Astrobiol. 9: 483-490.

Huang, J. T., D. J. Xing, and W. Huang. 2012. Relationship between protein folding kinetics and

amino acid properties. Amino Acids 43: 567-572.

Hurst, L. D., and A. R. Merchant. 2001. High guanine-cytosine content is not an adaptation to

high temperature: a comparative analysis amongst prokaryotes. Proc. Biol. Sci. 268: 493-497.

Ishihama, Y., T. Schmidt, J. Rappsilber, M. Mann, F. U. Hartl, M. J. Kerner, and D. Frishman.

2008. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9: 102.

Islam, M. M., S. Sohya, K. Noguchi, M. Yohda, and Y. Kuroda. 2008. Crystal structure of an

extensively simplified variant of bovine pancreatic trypsin inhibitor in which over one-third of

the residues are alanines. Proc. Natl. Acad. Sci. USA 105: 15334-15339.

Ivankov, D. N., and A. V. Finkelstein. 2004. Prediction of protein folding rates from the amino

acid sequence-predicted secondary structure. Proc. Natl. Acad. Sci. USA 101: 8942-8944.

Jacquier, H., A. Birgy, H. Le Nagard, Y. Mechulam, E. Schmitt, J. Glodt, B. Bercot, E. Petit,

J. Poulain, G. Barnaud, et al. 2013. Capturing the mutational landscape of the β-lactamase

TEM-1. Proc. Natl. Acad. Sci. USA 110: 13067-13072.

Jarzab, A., N. Kurzawa, T. Hopf, M. Moerch, J. Zecha, N. Leijten, Y. Bian, E. Musiol, M.

Maschberger, G. Stoehr, et al. 2020. Meltome atlas – thermal proteome stability across the

Tree of Life. Nat. Methods 17: 495-503.

Jordan, I. K., F. A. Kondrashov, I. A. Adzhubei, Y. I. Wolf, E. V. Koonin, A. S. Kondrashov, and

S. Sunyaev. 2005. A universal trend of amino acid gain and loss in protein evolution. Nature

433: 633-638.

Kachroo, A. H., J. M. Laurent, A. Akhmetov, M. Szilagyi-Jones, C. D. McWhite, A. Zhao, and

E. M. Marcotte. 2017. Systematic bacterialization of yeast genes identifies a near-universally

swappable pathway. eLife 6: e25093.

Kachroo, A. H., J. M. Laurent, C. M. Yellman, A. G. Meyer, C. O. Wilke, and E. M. Marcotte. 2015.

Systematic humanization of yeast genes reveals conserved functions and genetic modularity.

Science 348: 921-925.

Kaiser, C. M., D. H. Goldman, J. D. Chodera, I. Tinoco, Jr., and C. Bustamante. 2011. The

ribosome modulates nascent protein folding. Science 334: 1723-1727.

Khan, S., and M. Vihinen. 2010. Performance of protein stability predictors. Hum. Mutat. 31:

675-684.

Kim, D. E., H. Gu, and D. Baker. 1998. The sequences of small proteins are not extensively

optimized for rapid folding by natural selection. Proc. Natl. Acad. Sci. USA 95: 4982-4986.

Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press,

Cambridge, UK.

Knight, R. D., S. J. Freeland, and L. F. Landweber. 2001. A simple model based on mutation and

selection explains trends in codon and amino-acid usage and GC composition within and across

genomes. Genome Biol. 2: RESEARCH0010.

Kondrashov, A. S., S. Sunyaev, and F. A. Kondrashov. 2002. Dobzhansky-Muller incompatibilities

in protein evolution. Proc. Natl. Acad. Sci. USA 99: 14878-14883.



26 CHAPTER 12

Koonin, E. V. 2003. Comparative genomics, minimal gene-sets and the last universal common

ancestor. Nature Rev. Microbiol. 1: 127-136.

Krick, T., N. Verstraete, L. G. Alonso, D. A. Shub, D. U. Ferreiro, M. Shub, and I. E. Sánchez.

2014. Amino acid metabolism conflicts with protein diversity. Mol. Biol. Evol. 31: 2905-2912.

Kubelka, J., J. Hofrichter, and W. A. Eaton. 2004. The protein folding ’speed limit’. Curr. Opin.

Struct. Biol. 14: 76-88.

Kulathinal, R. J., B. R. Bettencourt, and D. L. Hartl. 2004. Compensated deleterious mutations

in insect genomes. Science 306: 1553-1554.

Kuo, C. H., N. A. Moran, and H. Ochman. 2009. The consequences of genetic drift for bacterial

genome complexity. Genome Res. 19: 1450-1454.

Labean, T. H., T. R. Butt, S. A. Kauffman, and E. A. Schultes. 2011. Protein folding absent

selection. Genes (Basel) 2: 608-626.
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28 CHAPTER 12

between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 573:

73-77.

Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford Univ. Press, Oxford,

UK.

Neupane, K., D. A. Foster, D. R. Dee, H. Yu, F. Wang, and M. T. Woodside. 2016. Direct

observation of transition paths during the folding of proteins and nucleic acids. Science 352:

239-242.

Nixon, C. F., S. A. Lim, Z. R. Sailer, I. N. Zheludev, C. L. Gee, B. A. Kelch, M. J. Harms, and S.

Marqusee. 2021. Exploring the evolutionary history of kinetic stability in the α-lytic protease

family. Biochemistry 60: 170-181.

Pál, C., B. Papp, and L. D. Hurst. 2001. Highly expressed genes in yeast evolve slowly. Genetics

158: 927-931.

Park, Y., B. P. H. Metzger, and J. W. Thornton. 2022. Epistatic drift causes gradual decay of

predictability in protein evolution. Science 376: 823-830.

Plaxco, K. W., K. T. Simons, I. Ruczinski, and D. Baker. 2000. Topology, stability, sequence,

and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:

11177-11183.

Prabhu, N. P., and A. K. Bhuyan. 2006. Prediction of folding rates of small proteins: empirical

relations based on length, secondary structure content, residue type, and stability. Biochemistry

45: 3805-3812.

Ramsey, D. C., M. P. Scherrer, T. Zhou, and C. O. Wilke. 2011. The relationship between relative

solvent accessibility and evolutionary rate in protein evolution. Genetics 188: 479-488.

Rebeaud, M. E., S. Mallik, P. Goloubinoff, and D. S. Tawfik. 2021. On the evolution of chaperones

and cochaperones and the expansion of proteomes across the Tree of Life. Proc. Natl. Acad.

Sci. USA 118: e2020885118.

Robertson, A. D., and K. P. Murphy. 1997. Protein structure and the energetics of protein stability.

Chem. Rev. 97: 1251-1268.

Rocha, E. P., and A. Danchin. 2002. Base composition bias might result from competition for

metabolic resources. Trends Genet. 18: 291-294.

Rokas, A., and S. B. Carroll. 2008. Frequent and widespread parallel evolution of protein sequences.

Mol. Biol. Evol. 25: 1943-1953.

Roscoe, B. P., K. M. Thayer, K. B. Zeldovich, D. Fushman, and D. N. Bolon. 2013. Analyses of

the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 425: 1363-1377.

Salverda, M. L., E. Dellus, F. A. Gorter, A. J. Debets, J. van der Oost, R. F. Hoekstra, D. S.

Tawfik, and J. A. de Visser. 2011. Initial mutations direct alternative pathways of protein

evolution. PLoS Genet. 7: e1001321.

Sarkisyan, K. S., D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov, D.

N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, et al. 2016. Local fitness landscape

of the green fluorescent protein. Nature 533: 397-401.

Sato, S., S. Xiang, and D. P. Raleigh. 2001. On the relationship between protein stability and

folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and



THE PROTEIN WORLD 29

Bacillus stearothermophilus L9. J. Mol. Biol. 312: 569-577.

Serohijos, A. W., Z. Rimas, and E. I. Shakhnovich. 2012. Protein biophysics explains why highly

abundant proteins evolve slowly. Cell Rep. 2: 249-256.

Serohijos, A. W., and E. I. Shakhnovich. 2014. Contribution of selection for protein folding stability

in shaping the patterns of polymorphisms in coding regions. Mol. Biol. Evol. 31: 165-176.

Serrano, L., A. G. Day, and A. R. Fersht. 1993. Step-wise mutation of barnase to binase. A

procedure for engineering increased stability of proteins and an experimental analysis of the

evolution of protein stability. J. Mol. Biol. 233: 305-312.

Shah, P., D. M. McCandlish, and J. B. Plotkin. 2015. Contingency and entrenchment in protein

evolution under purifying selection. Proc. Natl. Acad. Sci. USA 112: E3226-E3235.

Sharir-Ivry, A., and Y. Xia. 2018. Nature of long-range evolutionary constraint in enzymes: insights

from comparison to pseudoenzymes with similar structures. Mol. Biol. Evol. 35: 2597-2606.

Sharp, P. M., E. Bailes, R. J. Grocock, J. F. Peden, and R. E. Sockett. 2005. Variation in the

strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33: 1141-1153.

Sheu, S. Y., D. Y. Yang, H. L. Selzle, and E. W. Schlag. 2003. Energetics of hydrogen bonds in

peptides. Proc. Natl. Acad. Sci. USA 100: 12683-12687.

Shi, Z., J. Sellers, and J. Moult. 2012. Protein stability and in vivo concentration of missense

mutations in phenylalanine hydroxylase. Proteins 80: 61-70.

Sicheri, F., and D. S. Yang. 1995. Ice-binding structure and mechanism of an antifreeze protein

from winter flounder. Nature 375: 427-431.

Silverman, J. A., R. Balakrishnan, and P. B. Harbury. 2001. Reverse engineering the (β/α)8 barrel

fold. Proc. Natl. Acad. Sci. USA 98: 3092-3097.

Snyder, P. W., J. Mecinovic, D. T. Moustakas, S. W. Thomas, 3rd, M. Harder, E. T. Mack, M. R.

Lockett, A. Héroux, W. Sherman, and G. M. Whitesides. 2011. Mechanism of the hydrophobic

effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl.

Acad. Sci. USA 108: 17889-17894.

Sojo, V, C. Dessimoz, A. Pomiankowski, and N. Lane. 2016. Membrane proteins are dramatically

less conserved than water-soluble proteins across the Tree of Life. Mol. Biol. Evol. 33: 2874-

2884.

Stanley, C. E., Jr., and R. J. Kulathinal. 2016. flyDIVaS: a comparative genomics resource for

Drosophila divergence and selection. G3 (Bethesda) 6: 2355-2363.

Starr, T. N., J. M. Flynn, P. Mishra, D. N. A. Bolon, and J. W. Thornton. 2018. Pervasive

contingency and entrenchment in a billion years of Hsp90 evolution. Proc. Natl. Acad. Sci.

USA 115: 4453-4458.

Sternke, M., K. W. Tripp, and D. Barrick. 2019. Consensus sequence design as a general strategy to

create hyperstable, biologically active proteins. Proc. Natl. Acad. Sci. USA 116: 11275-11284.

Storz, J. F. 2016. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev.

Genet. 17: 239-250.

Suckow, J., P. Markiewicz, L. G. Kleina, J. Miller, B. Kisters-Woike, and B. Müller-Hill. 1996.

Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of



30 CHAPTER 12

the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 261: 509-523.

Sullivan, B. J., T. Nguyen, V. Durani, D. Mathur, S. Rojas, M. Thomas, T. Syu, and T. J. Magliery.

2012. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation

in triosephosphate isomerase stability. J. Mol. Biol. 420: 384-399.

Tartaglia, G. G., S. Pechmann, C. M. Dobson, and M. Vendruscolo. 2007. Life on the edge: a link

between gene expression levels and aggregation rates of human proteins. Trends Biochem. Sci.

32: 204-206.

Taverna, D. M., and R. A. Goldstein. 2002. Why are proteins marginally stable? Proteins 46:

105-109.

Toft, C., and M. A. Fares. 2010. Structural calibration of the rates of amino acid evolution in a

search for Darwin in drifting biological systems. Mol. Biol. Evol. 27: 2375-2385.

Tokuriki, N., F. Stricher, J. Schymkowitz, L. Serrano, and D. S. Tawfik. 2007. The stability effects

of protein mutations appear to be universally distributed. J. Mol. Biol. 369: 1318-1332.

Tokuriki, N., and D. S. Tawfik. 2009. Chaperonin overexpression promotes genetic variation and

enzyme evolution. Nature 459: 668-673.

Toprak, E., A. Veres, J. B. Michel, R. Chait, D. L. Hartl, and R. Kishony. 2011. Evolutionary paths

to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 44: 101-105.
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