The most fundamental challenge of any organism is the acquisition of resources necessary for cell growth and replication, without which the transmission of genes to the next generation is impossible. Cells must also avoid predation, infection, and other sources of mortality, but this requires resource investment as well. The goal here is to consider some of the evolved strategies that single-celled organisms exploit to harvest nutrients, often with extremely low environmental concentrations.

Nutrient acquisition takes many forms, from the direct uptake of small molecules from the environment to the fixation of carbon by photosynthesis to the engulfment of smaller cells by phagocytosis to the scavenging of host nutrients by intracellular parasites. Rather than provide an encyclopedic coverage of the topic, only the first two of these strategies will be considered in detail here.

Although the molecular details can be quite complicated, relatively simple models can describe in mechanistic terms the basic responses of uptake rates to ambient nutrient concentrations. At the very least, these models highlight the key cellular features that need to be quantified to understand the basis for interspecies differences in nutrient-uptake parameters. Unfortunately, they also point to substantial gaps in our knowledge. Photosynthesis is of particular interest as it fuels the biological world, and yet has unexplained inefficiencies.

Finally, because all cellular machinery has optimal operating conditions, homeostatic mechanisms exist to keep internal physiological conditions (e.g., ion balance) relatively constant in the face of a variable external world. Such challenges impose a recurrent energy cost to the maintenance budget of all cells. A brief overview will be given for two key homeostatic mechanisms – osmoregulation and the maintenance of an internal physiological clock.

Adaptive Fine-tuning of Elemental Composition

As outlined in Chapter 7, ~ 20 elements are essential to the growth of most cells. The bulk of biomass consists of carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur atoms (diminishing in that order), and to lesser extent the cations potassium, magnesium, calcium, and sodium, and ~ 10 trace metals. Different environments can provide quite different blends of these elements, and this can promote the growth of some species over others, depending on their elemental requirements and uptake efficiencies (Tilman 1982).

Motivated by the fact that the basic building blocks of life vary in elemental
content (C, N, P, and S in particular), several authors have suggested that natural selection fine tunes the elemental composition of cells to prevailing environmental conditions through genome-wide shifts in the use of alternative nucleotides and/or amino acids. Under this view, organisms living in environments depleted for one of these elements are expected to evolve towards reduced reliance on the same element in their building-block repertoires over eons of time. For the same reason, enzymes involved in the metabolism of a scarce element are expected to have nucleotides and/or amino acids depleted for the same element (Baudouin-Cornu et al. 2001; Alves and Savageau 2005; Acquisti et al. 2009; Grzymski and Dussaq 2012; Fasani and Savageau 2014). It has even been suggested that the genetic code is structured in such a way that the nitrogen content of the nucleotides within codons is correlated with that of the encoded amino acids, generating a reinforcing effect at the level of nucleotides and amino acids (Bragg and Hyder 2004; Shenhav and Zeevi 2020).

Consistent with this view, Baudouin-Cornu et al. (2001) found that enzymes involved in the assimilation of sulfur and carbon in E. coli and S. cerevisiae contain amino acids that are, respectively, depleted with sulfur and carbon (e.g., methionine and cysteine in the case of sulfur). Similar claims have been made based on the absence of methionine and cysteine residues in cyanobacterial proteins with enhanced expression during times of sulfur depletion (Mazel and Marlière 1989), and on the differential utilization of nitrogen in proteins involved in anabolism vs. catabolism (Acquisti et al. 2009). On the other hand, Baudouin-Cornu et al. (2001) found no such depletion for sulfur metabolizing enzymes in mammals, arguing that this is because mammals are less deprived of sulfur.

Underlying these causal arguments are two strong and often unstated assumptions: 1) that the genomic attributes of extant species have been molded evolutionarily by the current features of the environments that they inhabit; and 2) that natural selection is capable of promoting incremental modifications at the codon level. The first assumption ignores the possibility that matching between genomic requirements and the environment may be a simple consequence of competitive assortment of species, with differences in the former having evolved for entirely different reasons. The second assumption relies on the idea that natural selection is powerful enough to discriminate among alternative building blocks differing in just one or two atoms of a particular type. The matter of whether the population-genetic conditions necessary for such selection are likely to be met can be evaluated by applying the same strategy outlined in Chapter 17 for the differential costs of amino acids, but in this case by measuring costs in units of elemental composition rather than ATP equivalents.

Consider first the selective usage of alternative nucleotides on the basis of their carbon and nitrogen contents. Shenhav and Zeevi (2020) suggested that the vertical distribution of the C:N ratio in marine environments has driven the evolutionary divergence of genome-wide nucleotide usage in the bacteria inhabiting different depth strata. To determine whether the strength of selection required for such genome-wide remodeling is feasible, consider that over a range of growth conditions, the dry weight of E. coli and other bacterial cells consists of 45 to 47% carbon and 10 to 13% nitrogen (Folsom and Carlson 2015; Chapter 7). The dry weight of an average cell in this species is ~ 0.00038 ng, which given the molecular weights of C and N, implies ~ 9 x 10^9 C and ~ 2 x 10^8 N atoms per cell. An A:T nucleotide pair in DNA
contains 10 C and 7 N atoms, whereas a G:C pair contains 9 and 8, respectively. Thus, exchanges between A:T and G:C pair add/subtract just a single atom of each of these elements, changing the fractional elemental usages of C and N per cell by $\sim 10^{-10}$ and 0.5×10^{-9}, respectively.

Given that no known species has an effective population size of $N_e > 10^{10}$, such a single genomic base-pair shift in a nontranscribed genomic region is expected to be barely detectable by natural selection, if at all. However, as most genes are represented by multiple copies of mRNA per cell, these numbers need to be multiplied accordingly for transcribed genes. Nonetheless, because the average number of mRNA copies per cell per gene is < 10 in *E. coli* (Chapter 3), and unlike DNA, mRNAs are single-stranded, this still leaves the elemental cost very close to, if not below, the drift barrier. Thus, it appears doubtful that nucleotide usage can be selected on the basis of C:N composition.

Now consider the situation at the amino-acid level. The maximum difference in carbon-atom content among the 20 amino acids is 9 (tryptophan vs. glycine) and for N is 3 (arginine vs. several other residues). The maximum fractional impact of a single amino-acid substitution is then $\sim 10^{-9}$ for both C and N for a gene with just a single protein copy per cell for *E. coli*. However, for *E. coli*, the mean number of proteins per cell per expressed gene is ~ 2000, with a very large standard deviation (~ 5000) (Lynch and Marinov 2015). As this will frequently place the maximum fractional impact in the range of 10^{-6} to 10^{-5}, this suggests that the elemental costs of some amino-acid substitutions are in the realm of being detectable by natural selection, at least in bacteria.

The conditions necessary for effective selection on elemental composition are less conducive in eukaryotes. Because the average number of proteins per gene per cell increases less than linearly with cell volume (with the $\sim 2/3$ power; Chapter 7), the cost/benefit of an amino-acid substitution is expected to decline with cell volume. Thus, because N_e declines by two to five orders of magnitude from bacteria to eukaryotes, and cell volume increases by one to three orders of magnitude, it is questionable as to whether cellular elemental composition can be driven by natural selection in eukaryotes, especially in multicellular species with large cells. This provides a simple alternative explanation for the mammalian results noted above.

In summary, despite the strong arguments that have been made for the global significance of selection on elemental composition, even extending to the evolution of the genetic code (see Rozhnoivov and Payne (2021) and Xu and Zhang (2021) for compelling counterpoints), it is striking that all such studies are devoid of formal evolutionary analyses, despite their relatively straightforward utility. Notably, in one of the only applications of this kind, Günther et al. (2013) found that high-frequency derived alleles in *Arabidopsis* populations have elevated nitrogen content, contrary to expectations for a plant expected to be under nitrogen limitation.

Given the tiny selective pressures involved and the extremely long time time scales required for genome-wide repatterning of elemental composition, to the extent that matchings in organismal and environmental features occur, a more likely explanation is that other evolutionary forces drive cellular elemental composition, with species then assorting into environments that are most compatible with elemental demands. One such force is mutational bias, which plays a strong role in guiding nucleotide content of genomes across the Tree of Life, often operating in
Nutrient Uptake Kinetics

Nutrient uptake rates are concentration-dependent. At low substrate concentrations, consumers are limited by resource encounter rates, whereas at high concentrations, uptake mechanisms become saturated. One of the simplest models for nutrient-uptake kinetics captures both of these effects, and has the Michaelis-Menten form (identical in structure to the Monod growth equation introduced in Chapter 9, and derived for more general enzyme kinetics in Chapter 19),

\[V = \frac{V_{\text{max}} S}{k_S + S}, \]

(18.1)

where \(V \) is the rate of uptake of the nutrient (substrate) with concentration \(S \), and \(k_S \) is the concentration at which \(V \) is 50% of its maximum value, \(V_{\text{max}} \). Written in this way, the rate of nutrient is a hyperbolic function of the substrate concentration, which closely approximates empirical results from hundreds of studies. The ratio \(V_{\text{max}}/k_S \) is close to the uptake rate per unit nutrient for \(S \ll k_S \) and is commonly referred to as the uptake affinity.

The model parameters \(V_{\text{max}} \) and \(k_S \) are simple summary descriptors of potentially complex cellular mechanisms, leaving unexplained the actual determinants of such patterns. A more mechanistic model (Foundations 18.1) directly accounts for random encounter rates of the substrate by molecular diffusion and active transport across the cell membrane, while retaining the hyperbolic form of Equation 18.1.

Substantial attention has been given to nutrient-uptake parameters in phytoplankton species, particularly for nitrogen and phosphorus, which commonly limit growth in freshwater and marine ecosystems. The key parameters appear to be cell-volume dependent. Summarizing over a wide phylogenetic range of species, Edwards et al. (2012) found power-law exponents of 0.82 and 0.94 for \(V_{\text{max}} \) (per cell) for N and P uptake, respectively, when scaled against cell volume, and exponents of 0.33 and 0.53 for \(k_S \) for these same elements. Uptake affinities \((V_{\text{max}}/k_S) \) for both elements also increase with cell size, with allometric scaling powers on the order of 0.75 to 0.85. Similar results were obtained by Lomas et al. (2014) and Marañón (2015). Note, however, that although uptake affinities have positive allometric coefficients, implying that larger cells (on average) have higher rates of nutrient uptake on a per-cell basis, because the coefficients are \(< 1.0\), on a per-biomass basis, uptake rates actually decline with increasing cell size.

What are the underlying determinants of these scaling features? In Foundations 18.1, it is shown that \(V_{\text{max}} \) is equivalent to the product of the number of transporters on the cell surface (per cell) and the rate of handling of substrate molecules by an engaged transporter. As the surface area of a cell is proportional to the square of the linear dimension, whereas cell volume is proportional to the cube of the latter, if the density of transporters per unit surface area remains constant, one would...
expect V_{max} to scale with the $2/3$ power of cell volume (with variation around this expectation owing to shape differences). Some suggestion that such scaling occurs derives from observations on uptake rates for several amino acids in a polyploid series of yeast cells (from haploidy to tetraploidy) that increase in cell volume but are otherwise isogenic (Hennaut et al. 1970). However, the fact that the exponents of V_{max} and V_{max}/k_S (0.82 to 0.94, noted above) for interspecific comparisons are substantially higher than 0.67 suggests an increase in transporter density and/or a decrease in handling time with cell volume.

The half-saturation constant k_S is also expected to increase with transporter numbers and rate of handling (Foundations 18.1), albeit in a somewhat different way, so a positive scaling of this parameter with cell volume is again expected. Why the allometric scaling of k_S (noted above) is reduced two-fold relative to that for V_{max} is unclear, but this could happen if the capture rates of transporters declined with increasing cell volume. In principle, the theory in Foundations 18.1 might be brought in closer alignment with empirical observations by directly evaluating the relationship between transporter number and the geometric features of cells, but the necessary empirical work remains to be done.

There has been considerable speculation on the adaptive designs of various sized cells for particular environments (e.g., Chakraborty 2017), with Litchman et al. (2007) arguing that the uptake kinetics of various phytoplankton groups were essentially permanently molded by the physical/chemical environments in which the groups emerged phylogenetically, generally hundreds of millions of years ago. However, this frozen-phenotype view belies the rapidity with which metabolic processes can evolve in microbes (Helling et al. 1987; Maharjan et al. 2007; Blount et al. 2012; Samani and Bell 2016). As noted above for nucleotide and amino-acid composition, a more likely explanation for any phenotype-environment matching is simple competitive assortment in temporally and spatially varying environments.

Channels and transporters. Lipid membranes are essentially impermeable to the kinds of ions and organic molecules that cells harvest and export for nutritional and homeostatic reasons. Thus, for nearly every type of essential molecule, specialized trans-membrane proteins are dedicated to selective transmission across the lipid bilayer. Relative to cytoplasmic proteins, such molecules can be viewed as being inside-out, in the sense that the exterior of the transmembrane domain is hydrophobic (to enable embedding into the lipid environment), whereas the channel interior is hydrophilic.

Membrane pores can be roughly partitioned into two categories. Channels are selective, sometimes gated, sieves that allow the transmission of specific molecules, while excluding others. As channels do not bind molecules directly, their ion transfer can approach the rate of diffusion. In contrast, transporters bind cargo directly, and that reduces rates of molecular transmission to levels in the range of 50 to 250 molecules per second, although most of the data are restricted to *E. coli* (Waygood and Steeves 1980; Naftalin et al. 2007) and yeast (Kruckenberg et al. 1999; Ye et al. 2001). Whereas channels operate in a passive manner and can only transport solutes down a concentration gradient, traffic through transporters requires energy to induce the structural changes necessary for opening and closing the pores on opposite sides of the membrane.
Cellular investments in membrane proteins are enormous. Approximately ~20 to 35% of genes in prokaryotes and eukaryotes encoding for them (Wallin and von Heijne 1998; Stevens and Arkin 2000), and they typically comprise on the order of 25% of the total protein mass in cells (Itzhak et al. 2016), and up to 50% of membrane surface areas (Chapter 17). Because many types of channels are found across the Tree of Life (Greganova et al. 2013), e.g., potassium channels (Loukin et al. 2005), and aquaporins (Abascal et al. 2014), they must have originated very early (pre-LUCA). On the other hand, many channel types have been lost from specific lineages but dramatically expanded in others. For example, potassium channels are absent from fission yeast, and only present as one copy in budding yeast, but have expanded to ~300 copies in Paramecium. Losses of transporters are particularly common in parasite lineages, which can, for example, obtain nitrogen-containing amino acids and nucleotides from their host cells, eliminating the need to import ammonia for biosynthesis.

How difficult is it to evolve membrane-embedded proteins? Although hydrophobic transmembrane domains are a key requirement for reliable membrane insertion, the barrier to such a condition may not be great. For example, numerous studies have found that small random peptides often spontaneously develop into α-helices that adhere to the surfaces of lipid bilayers and under some conditions even insert as bundles of several helices (Lear et al. 1988; Pohorille et al. 2005; Mulkidjian et al. 2009). Part of the reason for the enhanced stability of α-helices when aligned along membranes is the partial sheltering of their hydrogen bonds from open water. Thus, for biophysical reasons alone, proto-channels may have been quite feasible in the earliest stages of cellular evolution.

There are many ways by which membrane pores use energy to drive the membrane passage of substrates. Many transporters couple the power from downhill diffusion of one molecule to the uphill work required for the import of a second molecule. Others cotransport protons or sodium ions (by the proton/sodium motive force) to drive cargo import. ABC (ATP binding cassette) transporters, found throughout bacteria and eukaryotes, utilize the energy from ATP hydrolysis to pump substrates against a concentration gradient. The exact number of ATP hydrolyses per substrate molecule is not firmly established, although it is thought to be near two, the same as the number of ATP-binding domains per transporter (Higgins 1992; Stefan et al. 2020). Some evidence suggests that transporters have ATPase activity even in the absence of substrate, leading to up to dozens of ATP hydrolyses per substrate-molecule uptake (Bock et al. 2019). Bacteria can also produce solute-binding proteins (SBPs) that sequester substrate molecules and then pass them on to cognate transporters (Driessen et al. 2000). In Gram-negative bacteria (with two membranes), the SBPs float freely in the periplasm, whereas in Gram-positives they are anchored to the cell surface.

Given the energy requirement for substrate transporters, as well as the expense of producing the membrane proteins themselves, it is desirable to know the total costs involved in import, as this must influence the success/failure of specific organisms in different environments. Although the requisite information for making such calculations appears to be lacking, it is clear what needs to be done. Knowing the number of atoms of a particular element comprising a newborn cell and the cell-division time, the total rate of cellular import can be computed, and if one is
willing to assume an energetic cost per imported molecule (e.g., two ATP hydrolyses
per molecule), the total cost of the import process can be computed. If one knows
the rate of transport per channel, one can also estimate the number of channels
necessary for such transport, and given a knowledge of the proteins involved, the
cost of synthesizing the transporters themselves can be estimated.

Using this approach, Phillips and Milo (2009) estimated that at saturating glu-
cose concentrations (with an assumed transport rate of 100 glucose molecules /
transporter / sec), ∼4% of the membrane areas of E. coli cells must be allocated to
glucose transporters. Assuming a 40 minute lifespan, and ∼2×10⁹ glucose molecules
to build a new cell, this implies: 1) a total cellular uptake rate of ∼833,000 glucose
molecules/sec, which at a transport rate of 100 molecules/sec, suggests the presence
of ∼8,000 glucose transporters per cell; and 2) a cost of glucose uptake per cell
division of ∼4×10⁹ ATP hydrolyses (assuming a cost of two ATPs per imported
glucose molecule), which is ∼15% of the total cost of building an E. coli cell. These
numbers further imply a cost of import per transporter of 500,000 ATP hydrolyses
per cell division, which greatly exceeds the cost of building the transporters, as even
a 1000 residue protein costs ∼30,000 ATP hydrolyses (Chapter 17). All of these
calculations are extremely rough, but they will hopefully motivate the need for fu-
ture observations on numbers of transporters per cell, transport rates, and energetic
costs of transport per cargo molecule.

Physiological acclimation. Care should be taken in the interpretation of esti-
mates of nutrient-uptake parameters, as these are often derived from cells in various
states of physiological acclimation, and it is known that uptake affinities can be de-
velopmentally variable. For example, when cells are acclimated to different nutrient
conditions, and then assayed over a full range of nutrient concentrations, k_S is typ-
ically lower for cells previously exposed to nutrient-depleted medium (Collos et al.
2005), i.e., substrate affinity increases as the acclimation concentration decreases. In
principle, such acclimation might be accomplished by regulation of transporter abun-
dance per unit surface area. However, in many species, such physiological responses
are associated with a developmental shift between the use of high- and low-affinity
transporters, with the former being up-regulated in low nutrient conditions (Eide
2012).

Empirical observations with S. cerevisiae led Levy et al. (2011) to suggest that
dual-transporter systems enable cells to more effectively respond to shifts to low-
nutrient conditions. The idea here is that low-affinity transporters activate a star-
vation response more readily than do high-affinity transporters, and in doing so en-
hance the expression of high-affinity transporter genes, thereby enabling the cell to
endure a longer period of nutrient scarcity. What remains unclear, however, is why
the same dynamical response could not be achieved with a single high-affinity trans-
porter system by simply up-regulating the transporter concentration in response to
decreasing nutrient abundance.

An alternative explanation that may solve this puzzle invokes a tradeoff be-
tween the maximum rate of nutrient uptake and k_S in different isoforms (Gudelj et
al. 2007), such that with limited membrane space available for transporters, the one
with the highest affinity at the current substrate concentration is utilized. Such a
tradeoff might arise if transporters operate in a bidirectional manner (Figure 18.1).
At high nutrient concentrations, high-affinity transporters can be saturated on both sides of the cell membrane, causing nutrient efflux to compete with influx, whereas low affinity transporters experience asymmetry, facilitating the net rate of influx (Bosdriesz et al. 2018). The resultant model, which allows the transporter binding-site conformation to switch from one side of the membrane to the other, leads to a modification of the normal Michaelis-Menten uptake kinetics. In contrast to uptake always increasing with the external substrate concentration, bidirectional flow results in a situation where for any particular transporter k_S, there is a substrate concentration at which the uptake rate is maximized. With the optimum concentration increasing with decreasing affinity (Figure 18.1), the model then predicts that lower-affinity transporters have higher rates of influx at higher external nutrient concentrations simply because they experience less conflict with internal cell concentrations.

Because genomes typically only encode for a small number of transporters for particular substrates, often no more than two, some peculiar behavior can arise under this model. Due to the existence of an optimal k_S for peak influx at any external nutrient concentration, the model predicts that for two transporters with k_S flanking the peak, there will always be a nutrient concentration at which both have equivalent influx rates. Notably, Wykoff et al. (2007) suggest that dual-transporter systems can exhibit bistable states, wherein at particular nutrient concentrations, a polymorphic (but clonally uniform) population of cells can be maintained. Although these authors view this sort of scenario to be the result of natural selection favoring a strategy for anticipating different types of nutrient-level changes, such an outcome may be nothing more than a physical consequence of the nature of the system.

Advantages of motility. Average swimming speeds in bacteria range from 10 to 100 μm/sec, whereas those in eukaryotic microbes are more on the order of 100 to 1000 μm/sec (Figure 16.4). There are numerous contexts in which swimming might confer an advantage, including predator avoidance and mate acquisition. In predatory species, motility will also increase the encounter rate of prey (Foundations 18.2), and when integrated with chemosensory systems, motility allows for habitat selection (Chapter 22).

Here, we simply explore the extent to which swimming can increase the rate of uptake of passively diffusing molecules. Recall that small ions have typical diffusion coefficients in the range of $D = 700$ to 2000 μm2/sec, with an average value of 1300 μm2/sec (Figure 7.6). If swimming is to substantially increase the rate of nutrient uptake, the product of the velocity (v) and the average distance between particles (ℓ), which has units of μm2/sec, needs to exceed the diffusion coefficient of the harvested particles. Purcell (1977) called the ratio $\ell v / D$ the stirring number (see also Zehr et al. 2017).

Assuming a random distribution, the mean inter-particle distance is approximately $[3/(4\pi S)]^{1/3}$, which is equivalent to the radius of a conceptual sphere having a volume per particle equal to the inverse of the substrate concentration, $1/S$. For example, a concentration of 1 mM, roughly the situation for inorganic carbon in seawater (Table 7.1), contains $\sim 600,000$ particles/μm3, which implies an average distance between particles of $\ell = 0.007$ μm. To match the average rate of ionic diffusion noted above, such that $\ell v = D$, the swimming velocity (D/ℓ) would then need to
be $v \approx 186,000 \mu m/sec$, far beyond the normal range in unicellular species. Similar calculations for a concentration of 1 μM (two to thirty times lower than average N and P concentrations in the ocean) lead to a critical speed of $\sim 18,600 \mu m/sec$, and for 1 nM (similar to the concentrations of a number of trace metals) the critical speed is $\sim 1,860 \mu m/sec$. Because cells swimming in low Reynolds-number environments drag along most of their boundary layer as they move (Berg and Purcell 1977), these are lower-bound estimates of critical swimming speeds. In addition, no consideration has been given to the energetic cost of swimming.

The overall implication here is that swimming by microbes generally does not greatly magnify the rate of intake of randomly distributed inorganic nutrients. A more formal analysis in Foundations 18.2 suggests a < 5% enhancement in bacteria, but potentially an up to two-fold inflation in large eukaryotic cells. Large organic compounds such as proteins have diffusion coefficients roughly 10× smaller than those of inorganic ions, which would reduce the critical swimming velocities ten-fold, so depending on the environmental concentrations there may be some significant increases in their encounter rate. Thus, although the largest, fastest swimming eukaryotic cells may experience significant gains in the uptake rate of nutrients by enhanced stirring alone (Short et al. 2006; Solari et al. 2007), motility likely plays a greater role in active searches for resource gradients when coupled with chemoreception (Chapter 22).

Photosynthesis

Whereas the acquisition of dissolved inorganic molecules is important to cells, only a fraction of organisms can survive on such resources alone. Almost all of the global ecosystem ultimately depends on the conversion of solar energy into chemical energy directly used in the biosynthesis of organic materials. Organisms capable of such transformations are called phototrophs, in contrast to heterotrophs, which acquire their reduced carbon compounds from the former, either via uptake as single molecules or by bulk ingestion (phagocytosis or herbivory). Five other carbon-fixation mechanisms, not requiring light, are exploited by various groups of anaerobic prokaryotes (Thauer 2007; Berg et al. 2010; Fuchs 2011), and collectively all of these non-heterotrophs are called autotrophs. Approximately 99% of total global primary production is generated by RuBisCO, the key carbon-fixation enzyme in phototrophs (Raven 2009).

Photosynthesis is known to occur in seven bacterial phyla, but only in the cyanobacteria and photosynthetic eukaryotes does it result in oxygen release. In these cases of oxygenic photosynthesis, water is used as an electron donor in ATP recharging. The remaining groups of phototrophic prokaryotes are anoxygenic, relying on reduced inorganic compounds such as ferrous iron, hydrogen, and sulfur as electron suppliers, which in today’s highly oxidized world are only locally abundant in a small number of environments. However, the atmosphere of the early Earth was anoxic and had CO$_2$ concentrations 100× higher than in today’s atmosphere, leading to the suggestion that anoxygenic photosynthesis was the first established form of phototrophy (Raven et al. 2017). Indeed, given its phylogenetic distribution
across bacteria, it may even have been present in the ancestral bacterium (Woese et al. 1985; Woese 1987), with many bacterial lineages subsequently experiencing loss and transition to heterotrophic life styles.

The origin of oxygenic photosynthesis was a key moment in evolutionary history, providing a means for exploiting a permanent and reliable supply of light energy to extract electrons from highly plentiful water molecules, using these to produce the ATP and NADPH necessary for the downstream synthesis of organic matter, and releasing O$_2$ in the process. The emergence and phylogenetic spread of oxygenic photosynthesis had a profound effect on the Earth’s biogeochemistry, ultimately leading to a 105-fold rise of atmospheric O$_2$ concentration and a smaller, but still substantial, reduction of CO$_2$ levels (Figure 18.2). The first big phase of oxygenation, occurring \sim 2.5 billion years ago and presumably the result of the origin of photosynthetic cyanobacteria, dramatically raised the atmospheric O$_2$ concentration, albeit to a level \simeq 5% of today’s atmosphere. It is thought that this set the stage for the evolution of oxygenic metabolism by aerobic heterotrophs (Lyons et al. 2014).

This new atmospheric state then remained relatively constant until \sim 750 million years ago, at which point there was a further elevation of O$_2$ concentration to today’s level. This second quantum shift in atmospheric O$_2$ content was presumably a consequence of the origin of diverse groups of photosynthetic eukaryotes (including chlorophytes, red algae, diatoms, dinoflagellates, euglenoids, and haptophytes). All of these lineages acquired their photosynthetic capacities (embodied in chloroplasts) via horizontal transfers of endosymbionts ultimately of cyanobacterial origin (Shih 2015; Fischer et al. 2016; Chapter 23). During this second transition, there was a gradual draw-down of atmospheric CO$_2$ to today’s level (which, despite the current uptick, is far lower than that 1 billion years ago).

The transformation of solar to chemical energy. As almost all of today’s photosynthesis is carried out by aerobes, the remaining focus will be on oxygenic photosynthesis. The details of this complex system are outlined in most biochemistry texts, and only a gross overview will be provided. A key point is that the transition to oxygenic photosynthesis involved the emergence of two major innovations: the water-oxidizing photosystem II, which releases electrons, protons, and oxygen; and photosystem I, which utilizes the electron/proton output from photosystem II to drive the production of the energy carrying compounds ATP and NADPH. (The numbering system here is a historical artifact of the timing of discoveries). Both photosystems are thought to date to a duplication event deep in the bacterial phylogeny, although the sequence similarity of their molecular constituents is so low as to raise considerable uncertainty on this interpretation. An additional issue is that the two photosystems coexist only in cyanobacteria and in the derived plastids of photosynthetic eukaryotes, although each individual system resides alone in a few other non-cyanobacterial groups. Thus, a key question is whether photosynthetic cyanobacteria uniquely joined the two systems via a horizontal transfer, or whether the dual system is ancestral, with other lineages containing just one having experienced loss of the other. Because all lineages of oxygenic photosynthetic bacteria appear to be derived within their phylogenetic groups, with no evidence for ancestral phototrophism within any group (even cyanobacteria) (Fischer et al. 2016; Shih
et al. 2017), the most parsimonious explanation is that multiple horizontal-transfer events occurred deep in bacterial phylogeny, one of which led to the dual I/II system in cyanobacteria.

Both photosystems are comprised of complexes of ∼ 20 protein subunits and cofactors, which jointly carry out processes of light-harvesting, photoprotection, and transfer of electrons and protons. Two of the major photosystem-II proteins evolved by gene duplication prior to the diversification of the cyanobacteria and operate as heterodimers, whereas all bacterial photosystem-I complexes operate as homodimers, except in cyanobacteria where they are heterodimeric (Cardona 2015; Cardona et al. 2015).

The overall process of photosynthesis is further subdivided into the light reactions (carried out by the photosystems just noted) and the downstream carbon fixation dark reactions (somewhat of a misnomer, as they can occur in light and dark). The quantum efficiency of the light reaction of photosynthesis, defined to be the number of moles of photons absorbed per mole of oxygen produced, is sometimes viewed as a universal constant. However, there is continuing disagreement as to its actual value (Melis 2009; Hill and Govindjee 2014), and although most estimates are in the range of 8 to 10 photons per O₂, it remains possible that this number differs among phylogenetic lineages. Taking the average, ∼ 9 photons are required to convert two H₂O and two NADP⁺ into one O₂, two protons, and two NADPH. The protons generated by this reaction are used to drive the production of ATP from ADP using a membrane-embedded ATP synthase (in essentially the same way that the analogous machine operates on the plasma membrane of bacteria and the inner mitochondrial membranes of eukaryotes; Chapters 2 and 17).

The carbon-fixation (dark) reactions, also known as the Calvin-Benson cycle, consume three molecules of CO₂ to produce one triose phosphate molecule (glyceraldehyde-3-phosphate) that can then be used in the synthesis of higher-order organic compounds. The process is a cycle in that a molecule of ribulose-1,5-bisphosphate (RuBP) is initially consumed, broken down, and then regenerated, yielding a net release of one glyceraldehyde-3-phosphate. This is an energy intensive process, with the production of each new triose phosphate requiring the investment of 6 NADPHs and 9 ATPs provided by the light reaction. This means that for the production of the 6 NADPHs needed to generate each triose phosphate, ∼ 27 photons (4.5 for each NADPH, from the preceding paragraph) are required. If we assume that ∼ 3 protons are required for the production of each ATP (Chapters 2 and 17), then 27 protons and ∼ 122 photons (4.5 per proton, from above) are required per triose phosphate. Thus, in total, ∼ 27 + 122 = 149 photons are required for the production of each triose phosphate, i.e., ∼ 50 photons per fixed carbon atom.

Not all wavelengths of light are utilized by photosynthetic organisms. Using chlorophylls a and b, along with a set of accessory pigments, all arranged within a reaction center in the large photosystem complexes, most photosynthesis relies on photons from the 400 to 700 nm wavelength range of the solar spectrum (essentially the visible spectrum). However, not all wavelengths of light are utilized with equal efficiency, and substantial energy in the infrared range of sunlight goes unharvested by most plants. A few photosynthesizers such as the cyanobacterium Acaryochloris have an accessory pigment that expands the range of availability up to 750 nm (Chen and Blankenship 2011), but it remains unclear why the vast majority of
photosynthesizers leave this resource untouched.

The world’s most abundant enzyme. The centerpiece of the Calvin-Benson cycle in photosynthesis is RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), the enzyme that catalyzes the joining of ribulose-1,5-bisphosphate (RuBP, a five-carbon molecule) and \(\text{CO}_2\) into the six-carbon product that is subsequently split into two three-carbon molecules (glyceraldehyde-3-phosphates). The latter are then deployed in downstream biosynthetic pathways as well as in the recycling of RuBP for another round of carbon fixation. As the major generator of primary organic material in the biosphere, RuBisCO is thought to be the most abundant protein on Earth, summing to \(\sim 0.7 \times 10^{12}\) kg, 95% of which is in terrestrial plants (Bar-On and Milo 2019).

Given the enzyme’s conserved role across biology, RuBisCO exhibits a surprising level of structural diversity. Phylogenetically, the enzyme consists of two major variants. Form I (a hexadecamer, consisting of a ring of eight large subunits, capped off on both ends by rings of four small subunits) is found in most eukaryotic algae and cyanobacteria. Form II (no small subunits) is found in anaerobic photosynthetic proteobacteria and dinoflagellates, each of which has multiple structural variants (Morse et al. 1995; Erb and Zarzycki 2018). Moreover, there are additional variants in prokaryotes. In the photosynthetic bacterium *Rhodopseudomonas palustris*, RuBisCO is a homohexamer, whereas in *Rhodospirillum rubrum*, it is a homodimer. In the two Archaea in which a form of RuBisCO is known, in one case it is a homooctamer (*Pyrococcus horikoshii*), and in another case it is a homodecamer (*Thermococcus kodakaraensis*) (Maeda et al. 2002). The evolutionary roots of RuBisCO remain unclear, but the presence of RuBisCO-like proteins with other functions in various bacterial and archaeal lineages suggests that \(\text{CO}_2\)-fixing RuBisCO may be derived from a protein with quite different features, possibly nucleotide assimilation (Ashida et al. 2005; Erb and Zarzycki 2018).

Despite the energetic expense of photosynthesis, RuBisCO is a surprisingly inefficient enzyme. As there are many applied reasons for understanding the mechanisms of photosynthesis, e.g., in agriculture, the uptake kinetics of RuBisCO have been studied in a broader phylogenetic context than any other enzyme, usually by evaluating *in vitro* performances of isolated complexes. Estimates of \(k_{\text{cat}}\) (a measure of the maximum processing rate per enzyme molecule; Chapter 19) for \(\text{CO}_2\) range from 1 to 5/sec in photosynthetic eukaryotes, with those in prokaryotes ranging from 5 to 14/sec (Uemura et al. 1997; Tcherkez et al. 2006; Savir et al. 2010; Galmés et al. 2014a,b), orders of magnitude below the possible values based on biophysical limitations. Likewise, \(k_{\text{cat}}/k_S\) (a measure of efficiency of processing at non-saturating conditions) for \(\text{CO}_2\) ranges from \(10^5\) to \(5 \times 10^5\) mol\(^{-1}\)sec\(^{-1}\) in eukaryotes, and from \(10^4\) to \(2 \times 10^5\) mol\(^{-1}\)sec\(^{-1}\) in bacteria, in both cases far below the diffusion limit expected for a perfect enzyme (Chapter 19). These low turnover rates per catalytic site necessitate that RuBisCO be maintained at high intracellular concentrations, further magnifying the cost of relying on this large enzyme. Moreover, the *in vitro* measures belie the actual situation in nature. Relative to maximum-capacity measurements of RuBisCO in the laboratory, the global time-average performance of the enzyme in nature is just 1% for terrestrial and 15% for marine environments (Bar-On and Milo 2019).
A large part of the problem here is that RuBisCO is a remarkably error-prone enzyme. As implied by its designation as a carboxylase/oxygenase, the enzyme competitively binds both CO\textsubscript{2} and O\textsubscript{2}, with the latter event resulting in the production of a toxic by-product that is eliminated by a process called photorespiration. Assuming that substrate molecule concentrations are less than saturating, the error rate of RuBisCO resulting from encounters with oxygen molecules is a function of the specificity ratio, which is equivalent to the ratio of the uptake affinities, \(\frac{k_{\text{cat},O_2}}{k_{S,O_2}} \) for the two substrates,

\[
\frac{R_{O_2/CO_2}}{C_{O_2/CO_2}} = \frac{k_{\text{cat},O_2}/k_{S,O_2}}{k_{\text{cat},CO_2}/k_{S,CO_2}}. \tag{18.2a}
\]

Estimates of \(\frac{R_{O_2/CO_2}}{C_{O_2/CO_2}} \) for RuBisCO from eukaryotes fall in the range of 0.005 to 0.015, whereas those for prokaryotes range from 0.02 to 0.10. Thus, if confronted with equal concentrations of the two gases, the error rate would be in the range of a few percent. Whereas this may not seem like an overly large problem, the total error rate is a function of the product of the specificity ratio and the ratio of substrate concentrations, \(\frac{R_{O_2/CO_2}}{C_{O_2/CO_2}} \cdot \frac{C_{O_2/CO_2}}{C_{O_2/CO_2}} \approx \frac{R_{O_2/CO_2}}{C_{O_2/CO_2}} \cdot \frac{C_{O_2/CO_2}}{C_{O_2/CO_2}} \),

\[
\frac{E_{O_2/CO_2}}{C_{O_2/CO_2}} = \frac{R_{O_2/CO_2}}{1 + (R_{O_2/CO_2} \cdot C_{O_2/CO_2})} \approx R_{O_2/CO_2} \cdot C_{O_2/CO_2}, \tag{18.2b}
\]

where the final approximation applies if \(R_{O_2/CO_2} \cdot C_{O_2/CO_2} \ll 1 \). Today’s atmosphere imposes much higher concentrations of O\textsubscript{2} than CO\textsubscript{2}, \(\sim 250 \) and 7 \(\mu \)M in saturated water respectively, so \(C_{O_2/CO_2} \approx 36 \). This implies astoundingly high error rates, e.g., in the range of 0.15 to 0.35 for eukaryotes. As discussed below, cellular mechanisms for concentrating CO\textsubscript{2} intracellularly have evolved to mitigate this problem, but such embellishments impose additional layers of cellular investment.

The underlying factors responsible for these suboptimal features of RuBisCO remain unclear. Phylogenetic reconstructions of ancestral states and evaluation of their biochemical features suggest that the addition of the small capping subunits to produce Form I enzymes led to both increased affinity and specificity for CO\textsubscript{2} prior to the great oxygenation event (Schulz et al. 2022). However, whereas such results suggest that Form I RuBisCOs may have been preadapted to changing atmospheric conditions, the enduring oxygen sensitivity of the enzyme for the past two billion years is left unexplained.

Tortell (2000) suggested an adaptive basis for an observed gradient between \(\frac{R_{O_2/CO_2}}{C_{O_2/CO_2}} \) and the estimated geological age of a phylogenetic group, with a decrease from \(\sim 0.02 \) in ancient cyanobacterial lineages to 0.005 in the more recent diatom lineage (although red algae are a clear outlier). They argue that the enzyme evolved higher CO\textsubscript{2} specificity in more recent lineages as atmospheric CO\textsubscript{2}/O\textsubscript{2} ratios declined (Figure 18.2). However, the assumption here is that RuBisCO initially evolved in bacteria inhabiting anoxic environments, and then remained frozen in the ancestral form in descendent cyanobacteria, whereas it became free to evolve in new directions in eukaryotic lineages following the great oxidation event (\(\sim 2.5 \) billion years ago). Recalling the points made above for nutrient uptake, i.e., the well-known ability of microbes to evolve metabolically on time scales of thousands of generations, the likelihood of enzymatic features remaining frozen with suboptimal features for millennia is very small. Moreover, the frozen-accident hypothesis is inconsistent with broad phylogenetic analyses suggesting substantial adaptive amino-acid substitutions in
RuBisCO, including on the dimeric interfaces near the active sites of the enzyme (Kapralov and Filatov 2007; Young et al. 2012; Poudel et al. 2020).

A common, alternative narrative is that the low efficiency and error-prone nature of RuBisCO is an inevitable consequence of structural constraints. Under this view, the enzyme actually has near optimal performance conditional on the unavoidable compromises. Most notably, a suggested negative correlation between the catalytic affinity for CO$_2$ and the ability of the enzyme to discriminate against O$_2$ motivates the view that simultaneous improvement in both features is structurally difficult (Tcherkez et al. 2006; Savir et al. 2010; Shih et al. 2016; Flamholz et al. 2019). Catalytic affinities and specificities for CO$_2$ vary by more than an order of magnitude across species, but do so in a phylogenetically dependent manner. Cyanobacteria are at one extreme, having high maximum rates of carboxylation but low specificities for CO$_2$, whereas the red algae are at the opposite end of the spectrum, with chlorophytes having intermediate values of both. However, it has been argued that confidence in the constraint argument has been inflated by a failure to account for the phylogenetic structure in the data, with the statistical correlations between RuBisCO kinetic parameters being largely due to differences between (rather than within) eukaryotic and prokaryotic groups (Bouvier et al. 2021). In addition, the proposed mechanistic constraint has not yet been demonstrated empirically.

As alluded to above, there is an additional determinant of CO$_2$-utilization efficiency by RuBisCO – the ratio of O$_2$ to CO$_2$ concentrations of the two substrates at the active site of the enzyme, C_{O_2}/C_{CO_2}. Many species reduce the latter via a CO$_2$-concentrating mechanism (CCM) for increasing the internal availability of CO$_2$ (Beardall and Giordano 2002; Falkowski and Raven 2007). Such mechanisms are best known in land plants harboring C$_4$ and CAM (crassulacean acid) metabolisms. In the latter cases, CO$_2$ is incorporated into malate in spatially or temporally separate contexts from RuBisCO, which subsequently receives its CO$_2$ payload after malate dissociation. Malate formation appears to have been evolutionarily modified into a CCM many dozens of times independently in land plants (Brown et al. 2011; Heyduk et al. 2019), as well as in various unicellular lineages (Raven et al. 2017). For example, cyanobacteria concentrate CO$_2$ locally into microcompartments housing the photosynthetic apparatus (carboxysomes).

Because an efficient CCM will offset a higher intrinsic error rate, RuBisCO evolution provides another potential example of a bivariate drift barrier. Indeed, there is a strong inverse relationship between the specificity factor and CCM factor across species (Badger et al. 1998), i.e., species with a strong capacity to concentrate CO$_2$ have less discriminating RuBisCOs. In addition, species with high specificity factors produce less RuBisCO (Hobson and Guest 1983). Thus, the overall patterns are consistent with the evolutionary-layering hypothesis (Lynch and Hagner 2014), which postulates that an increase in complexity need not ultimately yield an increase in overall system performance, as the addition of a layer in a molecular pathway alleviates the intensity of selection operating on prior components.

If nothing else, these observations on one of the biosphere’s most important proteins provide some cautionary notes for those who fully subscribe to the adaptive paradigm that all biological features have been molded to absolute perfection by the relentless pressure of natural selection. Are certain regions of phenotypic space empty (e.g., high CO$_2$ affinity and specificity in the case of RuBisCO) because
such phenotypes are absolutely unattainable on biophysical grounds, or because once produced the selective advantages are so weak or the mutational biases in the opposite direction so strong that they cannot be maintained in natural populations?

Biotechnology industries are built on the assumption that nature can be improved upon. With respect to engineering more efficient RuBisCO molecules with greater catalytic efficiency and speed, some improvements have been made with as few as one or two amino-acid substitutions, although these have not yet translated into increased productivity of recipient (crop) species (Spreitzer and Salvucci 2002; Greene et al. 2007; Gomez-Fernandez et al. 2018; Wilson et al. 2018; Zhou and Whitney 2019). Whereas such progress may seem unimpressive, it should be kept in mind that the period of investigation extends over just a 20-year period, in contrast to > 2 billion years of evolution of RuBisCO in nature. Notably, the existence of less than perfect enzymes is not restricted to RuBisCO, and there are success stories with respect the laboratory improvement of enzyme performances, e.g., a substantial increase in the efficiency of superoxide dismutase (Stroppolo et al. 2001), as will be discussed further in the following chapter.

Osmoregulation

Although cells often experience dramatically different environments on within- and between-generation time scales, they often go to extremes to ensure that internal physiological operating conditions remain relatively constant. Because the structure and function of proteins depends on their surrounding chemistry, to operate in an efficient manner, cells must regulate the concentrations of their constituents, including hydrogen ions and all other dissolved substances. Among other things, this raises the necessity of osmoregulation. Hyperosmotic (saline) environments promote cell dehydration, excess molecular crowding, and reduced levels of molecular diffusion. In contrast, hypoosmotic environments induce cell swelling and potential membrane rupture.

Water can pass through cell membranes at potentially very rapid rates, owing to the presence of membrane-spanning pores called aquaporins, which passively admit water molecules while excluding other ions. Because aquaporins are present across the entire Tree of Life, with the apparent exception of some thermophilic bacteria (Abascal et al. 2014), they were likely present in LUCA. In eukaryotes, they have diversified into two major groups, one of which engages in glycerol transport for reasons discussed below. However, osmoregulation is not a simple matter of regulating the number aquaporin channels. Much of it involves the active transport and/or production of solutes.

For bacterial cells completely surrounded by a cell wall, the natural tendency for cell-volume expansion by water entry is countered by wall resistance. However, the resultant equilibrium turgor pressure by no means eliminates problems with osmotic stress, particularly when the environment is hyperosmotic. Because there are no active pumps for water molecules in bacteria, osmoregulation requires continual environmental sensing and, when necessary, rapid fluxes of ions and/or the production of osmolytes (Bremer and Krämer 2019). Commonly synthesized solutes
are small organic compounds such as glycerol, proline, glycine betaine, and sucrose, which have no effects on the performance of active molecules and hence are called compatible solutes (Figure 18.3). Such molecules can also be expelled rapidly if the external medium is too hypoosmotic.

The power of cell walls for reducing the costs of osmotic balance is illustrated by a class of phenotypic variants in numerous bacterial species called L-form cells (Errington et al. 2016; Errington 2017; Claessen and Errington 2019). Such wall-less cells are induced by chronic exposure to antibiotics that interfere with peptidoglycan production. However, the maintenance of L-form cultures requires an osmoprotective medium (usually achieved by the addition of sucrose, which is not metabolized). Given that many eukaryotic lineages have abandoned cell walls, long-term evolution experiments to gradually wean L-forms from dependence on a hyperosmotic environment would help reveal how secondary accommodations emerge to affect such a radical change in cellular structure. Given the high energetic costs of cell walls (Chapters 16 and 17), the development of stable cultures of such cells may also have utility in biotechnological applications.

Oren (1999) calculated the costs of osmoregulation in halophilic bacteria using compatible solutes vs. ionic balance. The compatible-solute strategy requires the intracellular synthesis of organic osmolytes, whereas the ion-balance strategy requires the flux of appropriate ions across the plasma membrane. Mixtures of the two strategies occur, and such regulation is especially important in marine and other hypersaline environments. Depending on the costs of alternative strategies, different species may be favored in some environments and excluded from others.

The biosynthetic costs per compatible-solute molecule (in units of ATP hydrolyses) range from 20 to 66, increasing with increasing molecular weight of the compound (Figure 18.3). Based on the molarity of compatible solutes in cells of marine microbes, this led Oren (1999) to suggest that up to 85% of the construction cost of a halophilic cell may be associated with osmoprotection. Given these substantial investments for organisms inhabiting saline environments, it remains unclear why variation among organisms exists for the compatible solutes deployed. Glycerol is the cheapest solute to produce, and also has the highest solubility. However, although relied upon by yeast and the marine alga Dunaliella, which has specialized membranes, glycerol is a challenge because of its ability to permeate most membranes. Many nonhalophilic bacteria utilize sucrose or trehalose.

Equally unclear is why most species rely on compatible solutes at all (as opposed to maintaining ionic balance). Although the data are scant, as noted above, most specialized transporters appear to require one to two ATP hydrolyses for the forward movement of each transported molecule (Oren 1999; Patzlaff et al. 2003; Lycklama A Nijeholt 2018). Species that regulate osmotic pressure with ion balance often do so by modulating the cellular concentration of KCl. Potassium and chloride ions are imported through specific transporters, coupled with sodium export and proton input. The cost of import appears to be on the order of 0.5 to 0.67 ATP hydrolyses per KCl imported, 35 to 160× lower than the cost of synthesizing a compatible-solute molecule. These calculations do not include the costs of the machinery necessary to carry out these processes, which might be greater in total for Na⁺/H⁺ antiporters and K uniporters than for the biosynthetic machinery for compatible solutes.

Wall-less cells (most eukaryotes) face additional problems with osmotic pressure.
To retain high levels of intracellular solutes, there is a need for a mechanism for removal of water molecules that work themselves through the membrane. This problem is magnified greatly in cells engaging in phagocytosis and the inevitable consumption of the external medium. Among flagellated eukaryotes, even walled cells have a water problem, as the flagella are surrounded by lipid bilayers (but not by walls) providing an entry for water molecules. Many eukaryotes deal with this relentless import of water by use of a contractile vacuole, which grows in volume by accumulating excess cell water, and then periodically ejects its contents into the surrounding medium. How this is accomplished in a way that selectively retains key cytoplasmic constituents remains unclear, although a number of hypotheses have been suggested (Raven and Doblin 2014).

The amount of water expelled by eukaryotic cells is impressive. For example, Lynn (1982) found a positive scaling of the volume of the contractile vacuole and cell volume in ciliates, with the total rate of volumetric output (μm^3/day) scaling as $460V^{0.88}$, where V is the cell volume (μm^3). For the range of ciliate cell sizes studied, $\sim 10^4$ to $10^6 \mu m^3$, this relationship implies that between 152 and 87 cell volumes of water are ingested (and expelled) per day. Even higher rates have been found in other organisms. For the green alga *Chlamydomonas reinhardtii*, with a cell volume of $\sim 140 \mu m^3$ and an average expulsion rate of $38,000 \mu m^3$/day (Raven 1982; Buchmann and Becker 2009), the implied number of cell volumes ingested (and expelled) per day is 270. Another green alga *Mesostigma viride*, which harbors eight contractile vacuoles, expels 1150 equivalents of its volume per day (Buchmann and Becker 2009).

A deeper understanding of the magnitude of these demands can be obtained from expressions for the flow rate of water across a membrane of known porosity separating two liquids with different osmolarities (Foundations 18.3). Such analyses lead to the conclusion that a very substantial fraction of eukaryotic cell-maintenance requirements must be devoted to osmoregulation. The overall implication here is that, owing to different osmotic demands and the evolved mechanisms for dealing with them, environments with different salinities will substantially alter the growth performance of organisms even in the face of equivalent levels of critical resources.

Circadian Rhythms

Most multicellular organisms use internal molecular clocks to generate circadian rhythms. In effect, such time keepers enable organisms to predict the short-term future and make gene-expression and physiological changes appropriate to the demands of day/night (light/dark) cycles. The definition of a circadian system is somewhat subjective, but the central feature is some form of robust rhythmicity, with a near 24-hour periodicity that can be accurately entrained by an external factor (such as a light:dark cycle) but can also remain free-running for extended periods in a constant environment. A lack of the periodicity’s sensitivity to absolute temperature (unlike most biochemical properties) is generally taken to be a hallmark of a true circadian rhythm.

Most multicellular organisms have generation lengths of weeks to years, so such
diurnal cycles occur many times throughout the life of the individual. However, in unicellular species, minimum cell-division times can be much less than 24 hours. In this case, individual cells commonly complete their entire lives in very different periods of the diurnal cycle, raising questions as to the utility of a molecular clock in such species. Nevertheless, they do exist.

Circadian rhythms are known to exist in numerous unicellular phototrophs including green and red algae, dinoflagellates, and euglenoids (Roenneberg and Merrow 2001; Brunner and Merrow 2008; Noordally and Millar 2015). Eelderink-Chen et al. (2010) found that imposition of a temperature cycle can entrain a circadian rhythm in the yeast *S. cerevisiae*, although the cycle is damped within just two days of constant temperature. A day:night circadian rhythm is also loosely coupled to the mitotic cell cycle in the filamentous fungus *Neurospora*, albeit with cell division being far from synchronous (Hong et al. 2014). Although few of the details have been worked out, the time-keeping mechanism in all of these cases is thought to involve rhythmicity in clock-component gene transcription, as is known in land plants and metazoans. In multiple eukaryotes (humans, green algae, and filamentous fungi), rhythmicity appears to be governed by intracellular levels of magnesium, which operates as a cofactor with ATP and can therefore globally influence cellular features such as translation rates (Feeney et al. 2016).

Although the existence of entrainable clocks in heterotrophic bacteria is circumstantial at best (Sartor et al. 2019), the cyanobacterium *Synechococcus* has a well-characterized circadian clock, with a simple mechanism quite unlike that in eukaryotes (Figure 18.4). Indeed, the core oscillator can be made to operate *in vitro* in a solution containing just three proteins (KaiA, KaiB, and KaiC) and ATP (Nakajima et al. 2005; Phong et al. 2013), which engage in a cycle of post-translational modifications. The central hub, KaiC, is phosphorylated in the presence of KaiA, but once this occurs, KaiB forms a complex with KaiC that inhibits KaiA, thereby promoting dephosphorylation of KaiC, starting the cycle anew. This cycle further elicits a signal-transduction cascade (Chapter 22) of gene-expression events leading to growth-inhibition in the absence of light. Also of note is that KaiC is a homohexamer. Although the phosphorylation of individual KaiC molecules is a stochastic process, the hexamers dissociate and reassociate, leading to homogenization of their phosphorylation states and hence a more coherent signal (Kageyama et al. 2006).

The protein-driven *Synechococcus* clock is different from that typically observed in eukaryotic systems, which are generally based on negative feedback resulting from activation of genes whose products ultimately repress their own expression. The cycle seems to be set by metabolic oscillations determined by diurnal resource availability, and hence is only indirectly correlated with the light:dark cycle itself (Pattanayak et al. 2015). As with the clocks of land plant and animals, however, the *Synechococcus* circadian rhythm can track changes in the day:night cycle even in an *in vitro* setting, providing a built-in response to seasonal changes (Leypunskiy et al. 2017). On the other hand, exposure to short pulses of darkness reset the clock in inappropriate ways, decreasing cell division rates (Lambert et al. 2016), raising a second issue.

A key challenge for circadian clocks is the sensitivity to internal and external noise. The former derives from small numbers of molecules per cell and bursty transcription, while the latter results from weather effects such as cloud coverage.
Internal noise is expected to be more significant for species with smaller cells, which naturally harbor smaller numbers of proteins. Thus, it is of interest that *Prochlorococcus*, a marine cyanobacterium that is significantly smaller than *Synechococcus*, does not have a free-running circadian clock. Instead, *Prochlorococcus* deploys an hourglass-like clock, which responds directly to each daily change in light:dark and does not run freely in the absence of a daily signal. This shift is a consequence of the absence of the negative-feedback component KaiA in *Prochlorococcus* (Holtzendorff et al. 2008).

There is indirect evidence that this kind of shift in clock structure may be adaptive in small-celled species. When the internal noise is sufficiently large, free-running clocks are perturbed enough by noise amplification in the negative-feedback loop to become more unreliable than hourglass clocks that are naturally reset each day. On the other hand, free-running clocks appear to be less vulnerable to large-amplitude fluctuations in external signals (Chew et al. 2018; Pittayakanchit et al. 2018). The effects here are not large, however, and it remains to be shown whether the stochasticity of the clocks in these alternative systems have adaptive consequences.

How much does it cost to run and maintain a molecular clock? Although the details remain to be worked out, progress can be made in the example given above, as it appears that the vast majority of the cost is associated with the biosynthesis of the proteins involved. The Kai system is driven by ATP hydrolysis, but the 24-hour cycle involves the hydrolysis of just 60 ATP molecules per hexamer (Terauchi et al. 2007). Because each monomer of the KaiC hexamer consists of 518 amino acids, with a biosynthetic cost of ~ 30 ATP hydrolyses per amino acid (Chapter 17), provided the cell-division time is a day or less, it is clear that the biosynthesis of the Kai components constitutes almost all of the cost.

Chew et al. (2018) estimate there to be $\sim 4,000$ KaiA molecules/cell (284 amino acids each), 11,000 for KaiB (102 amino acids), and 8,000 for KaiC. Assuming a total cost of ~ 30 ATPs per amino acid, implies a total biosynthetic cost $\sim 2 \times 10^8$, as compared to the $\sim 5 \times 10^5$ for running the clock. Using Equation 8.2b, the cost of building a *Synechococcus* cell (with volume $\sim 0.5 \mu m^3$) is $\sim 14 \times 10^9$ ATP hydrolyses, so on the order of 1.5% of the construction energy budget is consumed by building and running the clock.

A similar computation can be made for the diminutive marine green alga *Ostreococcus*, which has a cell volume $\sim 1.7 \mu m^3$, and therefore requires $\sim 45 \times 10^9$ ATP hydrolyses to build a cell. The circadian cycle is driven by protein degradation, with the number of CCA1 protein copies cycling from 100 to 400 per day, and of TOC1 proteins cycling from 10 to 150 per cell (van Ooijen et al. 2011). Thus, the protein degradation rates are 0.75 and 0.93, respectively. Letting the proteins be ~ 300 and 500 in length, and assuming one cell division per day, using Equation 17.4, which assumes amino acids are recycled, leads to estimates of total costs of protein production of 3.6×10^6 and 2.2×10^9 ATP hydrolyses for CCA1 and TOC1. Together, these constitute just 0.01% of the cell’s total energy budget. A number of costs are ignored here, but their inclusion would be unlikely to increase this estimate by more than an order of magnitude. For example, although the cost of transcription has been ignored, this is
known to be on the order of 10% of the protein-level cost (Chapter 17). The clock in this species seems to run via non-transcriptional rhythms of a light-sensitive protein (O’Neill et al. 2011), which could further increase the cost several fold. However, the central point seems to remain – the overall cost of running a clock in this species is kept very small because of the low number of proteins involved. Recall, however, that were there to be an advantage of losing a clock, a bioenergetic advantage of 1% would be quite easily promoted by natural selection.

Finally, it is worth emphasizing the elegant simplicity of the few molecular clocks that have been dissected in microbial species, in contrast to the extraordinarily baroque multi-loop constructs deployed by animals. Not only are the pathways more complex, elongated, and mechanistically diverse, but metazoans appear to have multiple clocks for different subcellular features (Mofatteh et al. 2021). Combined with the basic Cdk/kinase oscillator deployed in the cell cycle (Chapter 10), the latter can be intertwined, often with one master clock locking in the phasing of others. Some subsidiary clocks have cycle lengths that are harmonics of the usual 24-hour periodicity, e.g., 8- or 12-hour periods, and some can be made to run autonomously with respect to others.

There is no evidence that the embellishments of complex clocks in multicellular species are more efficient, and they are certainly more energetically costly. This leads one author to dub them an example of a “Rube Goldberg” construct (Sancar 2008), after the cartoonist famous for his creation of extraordinarily complex machines to carry out simple tasks. As has been seen in prior chapters and will continue to emerge in those following, this seemingly gratuitous increase in the complexity of molecular mechanisms is a hallmark of multicellular organisms. Rather than being driven by adaptive processes, it has likely accrued in a nonadaptive manner as a passive consequence of the change in the population-genetic environment of such lineages. The emergent traits remain critical to organismal well-being, but gradually accrue aspects of overdesign.

Summary

- Of the ~20 chemical elements essential for growth, almost all are enriched intracellularly relative to environmental levels. It has been suggested that low environmental concentrations of elements can encourage selection for genome-wide enrichment of particular nucleotides depauperate for such elements. However, the selection differentials at the single-nucleotide level are so small that this is unlikely to occur in even the largest prokaryotic populations. On the other hand, selection for/against usage of particular amino acids with extreme elemental compositions is feasible in some unicellular species with very large effective populations sizes.

- Nutrient-uptake affinities increase with cell volume across species on a per-cell basis, but decline on a per-biomass basis. Although the data are limited, >10% of cell energy budgets is allocated to the physical process of nutrient uptake,
and many species acclimate to their surrounding nutrient levels by deploying membrane-bound transporters with different levels of substrate affinity.

- In large eukaryotic cells, swimming can increase rates of nutrient uptake by overcoming diffusion limitations. However, the effects are small in bacterial sized cells, suggesting that the primary function of motility involves other factors such as the movement up resource gradients by chemotaxis.

- The process of oxygenic photosynthesis, responsible for the fixation of almost all of Earth’s carbon, is an energetically expensive process. It is carried out by RuBisCO, probably the world’s most abundant protein, but also one of the least efficient and most error-prone of all known enzymes. It remains unclear whether the latter features are consequences of biophysical constraints.

- To keep their internal conditions at near-optimal states for physiological function, all cells have a variety of homeostatic mechanisms. Osmoregulation is a perpetual problem for cells, as internal solute concentrations are generally unequal to those in the external environment. Cell walls counter the osmotic stress confronted by many species, but wall-less species (many eukaryotes) must continuously pump water out, often with a daily export equivalent to 100 to 1000 cell volumes. The relative costs of structural (wall) vs. dynamical (pump) solutions to the osmoregulation problem remain to be worked out, but both consume a considerable fraction of cellular resources.

- Despite having cell-division times that are typically < 1 day, a number of unicellular species have independently evolved internal clocks with 24-hour periodicities, which provide a basis for predicting and preparing for diurnal environmental changes. Although only understood in a few species, the molecular mechanisms appear to consume no more than 2% of a cell’s daily energy budget, and most of this is associated with construction rather than running of the clock. The molecular details of clocks in unicellular species are striking in their simplicity relative to the baroque mechanisms deployed in multicellular species.
Foundations 18.1. The response of uptake rate to nutrient concentration.
Because the uptake of a molecule is typically carried out by specific membrane-bound nutrient transporters, the total rate of uptake by a cell is expected to scale positively with both the number of transporters residing in the cell membrane and the nutrient concentration at the surface of the cell. The latter, however, is not the same as the concentration in the bulk medium. As nutrients at the cell surface are constantly being taken up, there is a natural concentration gradient away from the cell surface governed by the rate of nutrient diffusion. Thus, one way of achieving a mechanistic understanding of the cellular rate of nutrient uptake is to first consider the transporter-based uptake kinetics conditional on the nutrient concentration at the cell surface, and then to relate the latter to the external diffusion process (Armstrong 2008).

Letting f denote the fraction of transporters on the cell surface engaged with a substrate molecule, t_h be the handling time of a captured molecule (the time to transport the molecule to the cytoplasm), k_c be the capture rate of a substrate molecule by an unengaged transporter, and S_0 be the nutrient concentration at the cell surface, the rate of change in transporter occupancy is

$$ \frac{df}{dt} = k_c S_0 (1 - f) - \frac{f}{t_h}. \tag{18.1.1a}$$

At steady state, $df/dt = 0$, and rearrangement of Equation 18.1.1a yields a mean fraction of occupied transporters

$$ \tilde{f} = \frac{S_0}{[1/(k_c t_h)] + S_0}, \tag{18.1.1b}$$

which asymptotically approaches 1.0 as $S_0 \to \infty$. With n_T transporters per cell surface, and each engaged transporter handling its cargo at rate $1/t_h$, the total rate of nutrient uptake is then

$$ V = \frac{n_T \tilde{f}}{t_h} = \frac{V_{\text{max}} S_0}{k_T + S_0}, \tag{18.1.2}$$

with $V_{\text{max}} = n_T/t_h$ being the maximum uptake rate (achieved when all transporters are engaged), and $k_T = [1/(k_c t_h)]$ being the nutrient concentration at the cell surface at which the uptake rate is half the maximum value.

Although Equation 18.1.2 has the convenient Michaelis-Menten form, as in Equation 18.1, the substrate concentration is inconveniently that at the cell surface, S_0. The next step is to determine the expected nutrient concentration at the cell surface, S_0, conditional on the measurable concentration in the bulk medium, S_∞. Pasciak and Gavis (1974) noted that at steady state, the transport-limited flux rate into the cell (noted above) must be equivalent to the delivery rate of the nutrient to the cell surface. The latter can be obtained by use of Fick’s law (Foundations 7.2), which states that the flux rate of a diffusing substrate across a point is equal to the product of the concentration gradient at that point and the diffusion coefficient,

$$ F = D \cdot (\partial S_d/\partial d)|_{d=r_e}, \tag{18.1.3a}$$

where D is the diffusion constant for the substrate, r_e is the effective radius of the cell (which can be obtained from the cell volume, assuming a sphere), and d is the distance from the center of the cell. To obtain the concentration gradient, we assume an asymptotic approach to the bulk fluid concentration (S_∞) with distance d, starting with the concentration at the cell surface, S_0,

$$ S_d = S_0 + (S_\infty - S_0) \left(1 - \frac{r_e}{d}\right), \tag{18.1.3b}$$
which has the properties of $S_d = S_0$ when $d = r_e$, and $S_d \rightarrow S_0$ as $r_e/d \rightarrow 0$. The concentration gradient is then
\[
\frac{\partial S_d}{\partial d} = \frac{r_e(S_\infty - S_0)}{d^2}. \tag{18.1.3c}
\]
Substituting into Equation 18.1.3a, with $d = r_e$, the flux per unit surface area of the sphere is found to be
\[
F = D(S_\infty - S_0)/r_e, \tag{18.1.3d}
\]
and multiplication by the cell surface area $4\pi r_e^2$ yields
\[
V = (4\pi r_e)D(S_\infty - S_0). \tag{18.1.3e}
\]
This shows that the total flux rate to the cell is proportional to r_e, rather than the surface area of the cell, because of the inverse relationship between the flux rate per surface area and r_e.

Often Equation 18.1.3e is multiplied by a dimensionless Sherwood number (Sh), which accounts for effects on the diffusion rate resulting from the deviation of the actual cell shape from a sphere and from other active processes that magnify the movement of substrate molecules relative to the case of pure diffusion (e.g., swimming). In other words, Sh is defined as the ratio of the realized rate of uptake to the expectation under diffusion alone. Defining the Péclet number as $Pe = 2r_e v/D$, where $2r_e$ is the length of the cell, v is the swimming velocity, and D is the diffusion coefficient, $Sh \approx [1 + (1 + 2Pe)^{1/3}]^2/2$ (Guasto et al. 2012).

Equation 18.1.3e assumes $Sh = 1$, and for the remaining formulae, we will suppress the use of Sh, noting that where desired it can simply be inserted as a prefactor for D. However, to gain some appreciation for the degree to which swimming can enhance nutrient uptake, recall from Figure 7.6 that $D \sim 10^3 \mu m^2/sec$ for small ions. From Figure 16.4 a typical swimming speed for a bacterial cell with volume $1 \mu m^3$ (which implies $2r_e \approx 1.2 \mu m$) is $v = 50 \mu m/sec$. This implies a Péclet number of 0.06, and a Sherwood number equal to 2.6. Thus, by breaking down the diffusion barrier by swimming, large (phytoplankton-sized) cells are capable of a substantial increase in the rate of nutrient uptake. This, of course, needs to be tempered by the increased cost of swimming.

Finally, rearranging Equation 18.1.3e to solve for S_0 and substituting the latter into Equation 18.1.2 yields the expected uptake rate
\[
V = \frac{V_{\text{max}}(V - D'S_\infty)}{V + (k_T - S_\infty)D'}, \tag{18.1.4a}
\]
where $D' = D(4\pi r_e)$. Although Equation 18.1.4a is a quadratic equation, making the solution for V somewhat complicated, Armstrong (2008) found that a close approximation is provided by
\[
V = \frac{V_{\text{max}}S_\infty}{k_T + [V_{\text{max}}/(4\pi D)] + S_\infty}. \tag{18.1.4b}
\]
Note that this expression has the same form as Equation 18.1.2, with the relevant nutrient concentration now being that in the bulk medium S_∞, and the half-saturation constant being expanded to $k_T + [V_{\text{max}}/(4\pi D)]$.

The overall utility of this approach is that it provides a mechanistic understanding of uptake kinetics in terms of both the cellular features (number, affinity, and handling time of transporters, n_T, k_e, and t_h, respectively), and the additional factors.
influencing the magnitude of the diffusive boundary around the cell (embodied in the parameter D). Summarizing from above,

$$V_{\text{max}} = \frac{nT}{t_h}, \quad (18.1.5a)$$

$$k_S = \frac{1}{t_h} \left(\frac{1}{k_c} + \frac{nT}{4\pi D} \right), \quad (18.1.5b)$$

which further implies an uptake affinity of

$$\frac{V_{\text{max}}}{k_S} = \frac{(4\pi D)nT}{(4\pi D/k_c) + nT}. \quad (18.1.5c)$$

Foundations 18.2. Encounter and capture rates. Ingestion rates are functions of both the rates at which cells physically encounter molecules (or larger prey items) and the subsequent efficiency of particle capture. The preceding theory simply treated the capture rate (per unit substrate concentration) as a fixed constant, but here we go further in mechanistic terms by considering the roles played by the rate of movement of the consumer and its substrate, the size of the cell, and the number of receptors on the surface (transporters) used in capturing the substrate. We first consider the encounter rate, and then the efficiency of capture, the product of which can be viewed as the capture rate k_c.

In Foundations 7.2, it was shown that the rate of encounter between two passively diffusing particles is of the form

$$k_e = 4\pi RD, \quad (18.2.1a)$$

where R is the sum of the radii of the two particles, and D is the sum of their diffusion coefficients. After defining the diffusion coefficients in terms of particle radii, and assuming one particle (in this case, the consumer) is much larger than the other, this leads to

$$k_e \approx \left(\frac{2k_B T}{3\eta} \right) \left(\frac{r_c}{r_n} \right), \quad (18.2.1b)$$

where k_B is the Boltzmann constant, T is the temperature (in Kelvins), η is the viscosity of the medium, and r_c and r_n are the radii of the consumer cell and the nutrient particle. In this case of passive diffusion, the encounter rate is directly proportional to the width of the consumer cell (here assumed to be a sphere).

Suppose now that the consumer and its prey are capable of swimming at rates well beyond the diffusion rates. Then, each particle type (predator and prey) can be viewed as sweeping through a cylinder at a rate proportional to the square of its radius and the respective swimming velocity (v_c and v_n). Under the assumption of random swimming patterns,

$$k_c = \frac{\pi R^2[(v_c + v_n)^3 - (v_c - v_n)^3]}{6v_cv_n}, \quad (18.2.2a)$$

where R is now taken to be the encounter radius of consumer and substrate, which with a sensory system in the former might exceed the sum $(r_c + r_n)$ (Gerritsen and Strickler 1977). Assuming the prey is a passive nutrient molecule, such that $v_c \gg v_n$, this expression reduces to

$$k_c = \pi R^2 v_c, \quad (18.2.2b)$$

the area of a circle of radius R times the speed of the consumer. Thus, active swimming greatly increases the encounter rate, as this is now proportional to the square of the
radius of the consumer. If turbulence contributes to movement of the consumer and/or substrate, this can be accommodated by addition of an appropriate constant to \(v_c \) (Rothschild and Osborn 1988; Evans 1989).

One limitation of these expressions is the assumption of no back-tracking on the part of the consumer, such that the same nutrient concentration is always being encountered, as might be the case if the consumer never changed direction. If, on the other hand, the direction of movement changes stochastically, the consumer will occasionally encounter an already explored patch. In this case, Equation 18.2.1a again applies, but with \(D \) redefined to be an effective diffusion coefficient. For example, in the case of run-and-tumble motion (Foundations 16.2), \(D = v_c^2 \tau / (3(1 - \tau)) \), where \(\tau \) is the mean time between switching directions, and \(\tau \) is the average cosine of the angular change in direction. Equation 18.2.1a then expands to

\[
k_e = \frac{4\pi R v_c^2 \tau}{3(1 - \tau)},
\]

with the encounter rate again being linear in \(R \) (Visser and Kiorboe 2006).

If the consumer cell were 100% efficient at capturing particles upon encounter, the consumption rate would simply be proportional to the encounter rate and the substrate concentration (assuming nonsaturating conditions). However, nutrient uptake generally can only be accomplished when substrate molecules encounter particular receptors on the cell surface. Thus, we must further consider the capture efficiency, an issue first tackled in the pioneering work of Berg and Purcell (1977); additional details can be found in Mitchell (1991, 2002).

The central idea is that conditional upon an encounter, if a particle is not captured by a receptor, it will still diffuse around in the vicinity of the cell for quite some time, providing additional opportunities for proper engagement. Letting \(r_r \) be the radius of a receptor, with \(N_r \) of these distributed over the surface of the cell, the total area of receptors is \(\pi N_r r_r^2 \), and the probability that a random encounter does not hit a receptor is one minus the fraction of cell surface occupied by receptors,

\[
P_0 = 1 - \frac{N_r r_r^2}{4r_c^2}.
\]

(18.2.3)

Assuming that each fresh (independent) encounter of the cell starts at approximate distance \(r_r \) from the cell surface, the probability that the particle will be captured anew and not lost forever is

\[
P_s = \frac{r_c}{r_c + r_r}.
\]

(18.2.4)

The probability that the particle eventually escapes after a series of encounters is then

\[
P_{esc} = \sum_{i=0}^{\infty} P_0^i P_s^i (1 - P_s) = \frac{1 - P_s}{1 - P_0 P_s},
\]

(18.2.5)

which leads to the probability of capture

\[
P_{cap} = 1 - P_{esc} = \frac{N_r r_r}{4r_c + N_r r_r}.
\]

(18.2.6)

The rate of successful encounters (the capture rate) is then the product \(k_e P_{cap} \).

This result provides insight into the degree to which a cell membrane needs to be populated by receptors to maintain a high probability of capture of encountered particles. Equation 18.2.6 shows that the probability of capture reaches 50% when the number of receptors per cell is \(N_r = 4r_c/r_r \), which would occupy \((\pi r_r^2)(4r_c/r_r) \) of the
total cell surface area \(4\pi r_c^2\), implying a fractional coverage of \(r_r/r_c\). Thus, as receptor diameters are \(\ll r_c\), only a small fraction of the cell surface needs to be occupied by receptors to ensure a high capture efficiency.

Foundations 18.3. The cost of osmoregulation. The cytoplasm of cells is often hyperosmotic with respect to the surrounding fluid, causing a tendency for water molecules to enter through the partially permeable cell membrane. Here, we attempt to calculate the energy required to maintain the hyperosmotic states of cells. The pressure difference across a membrane can be computed with the van’t Hoff equation,

\[
\Delta P = \Delta C \cdot k_B T,
\]

(18.3.1)

where \(\Delta C\) is the difference in the concentration of solute molecules across the membrane, \(k_B\) is the Boltzmann constant, and \(T\) is the temperature (in Kelvins). For most biological temperatures \(k_B T \simeq 4.1 \times 10^{-21}\) Joules (1 Joule = 1 kg·M²·sec⁻² = 0.00024 kcal). For example, the approximate osmolarity of freshwater (summed over all solutes) is 2 mM, or equivalently 2 osmol/M³. Considering a typical cell with a cytoplasmic osmolality of 100 osmol/M³, the concentration difference is 98 osmol/M³. Multiplying by Avogadro’s number of molecules/mol, \(\Delta C = 590 \times 10^{23}\) molecules/M³, and multiplying by \(k_B T\) yields \(\Delta P = 242,000\) Joules/M³.

The flow rate across a membrane is equal to the product of the pressure difference, the hydraulic conductivity of the membrane \((L_p)\), and the membrane surface area \((A)\),

\[
\Delta F = \Delta P \cdot L_p \cdot A,
\]

(18.3.2)

where \(L_p\) has units of M⁴·sec⁻¹·Joules⁻¹ when \(\Delta P\) is in units of Joules/M³ and \(A\) is in units of M², yielding \(\Delta F\) in units of M³/sec.

At this point, these formulations may be noninformative to many biologists. However, to understand the challenge that osmotic pressure imposes upon cells, consider that an average freshwater eukaryote has a cell-membrane conductivity \(L_p \simeq 7 \times 10^{-15}\) M⁴·sec⁻¹·Joules⁻¹ (Raven 1982; Hellebust et al. 1989). Assuming a spherical cell with volume 1000 \(\mu\)m³, the surface area would be \(A = 482\) \(\mu\)m², and substitution into Equation 18.3.2 leads to a predicted water intake of \(\sim 7 \times 10^4\) \(\mu\)m³/day, i.e., a daily volumetric intake equal to 70× the cell volume. To maintain cell homeostasis, this is also the amount of water that must be pumped out of the cell per day.

As the mechanism by which cells expel water is not fully understood, the energy required to maintain osmotic balance remains somewhat uncertain. However, Raven (1982) reasoned out an energetic cost of \(\sim 10^{-16}\) mol ATP hydrolyses/\(\mu\)m³. Using this as an approximation, after multiplying by Avogadro’s number, the 1000 \(\mu\)m³ cell just noted (with a water intake rate of \(7 \times 10^4\) \(\mu\)m³/day) would require \(4 \times 10^{12}\) ATP hydrolyses/day for pumping. The daily total maintenance cost for a cell of this size is also \(4 \times 10^{12}\) ATP hydrolyses (Chapter 8). There are a number of uncertainties in these calculations, but assuming they are roughly correct, the implication is that a substantial fraction of cellular maintenance costs in eukaryotic cells derives from the regulation of osmotic balance. For ciliates, it has been estimated that 2 to 40% of total cell energy budgets are associated with contractile-vacuole pumping (increasing with cell volume), with values for *Tetrahymena* and *Paramecium* being in the range of 10 to 15% (Lynch et al. 2022).
Literature Cited

32

727-740.

Figure 18.1. A structural explanation for the use of dual high/low-affinity transporters for nutrient uptake. **Left)** Transporters can be bidirectional, in the sense that they can bind to substrates on both sides of the membrane. In that case, when nutrient concentrations are high internally and externally, rates of influx will be nearly equal to those of efflux. However, low affinity transporters require higher concentrations to become saturated, and therefore maintain larger differences between influx and efflux rates at high nutrient concentrations. **Right)** Net influx rates for transporters with different affinities (k_S, x axis) are given for three substrate concentrations (solid lines) and assuming constant V_{max}. Low k_S (half-saturation constant) implies high affinity for the substrate. Net influx is low when k_S is low because saturation occurs at very low substrate concentrations, and the high affinity leads to near equal levels of binding on both sides of the membrane. On the other hand, with very high k_S, although there is little competitive binding, the overall influx rate is low simply because of the low absolute affinity on the external side of the membrane. Overall rates of influx increase with nutrient concentration regardless of k_S, but the optimum k_S shifts to the right (meaning that the optimum affinity is lowered) with higher concentrations. The dashed lines show the behavior that would occur with purely Michaelis-Menten uptake dynamics – in this case, the optimal k_S is always zero, as there is no competitive binding on the inside of the membrane. Derivations and other details can be found in Bosdriesz et al. (2018).
Figure 18.2. The historical record of the Earth’s atmospheric CO$_2$ and O$_2$ concentrations, given as a crude idealization of patterns outlined in Shih (2015) and Raven (2017). Note that the vertical axis is on a logarithmic scale.
Figure 18.3. Some compatible solutes commonly deployed in osmotic regulation in prokaryotes and eukaryotes, and the biosynthetic costs per molecule (in parentheses, and in units of ATP hydrolyses). Taken from Oren (1999; his Figure 2), with the costs modified to be compatible with the recipes outlined in Foundations 17.2.
Figure 18.4. The molecular network for the circadian clock in the cyanobacterium *Synechococcus*. **Left**) Hexameric KaiC is autophosphorylated in the presence of KaiA (right), until it is joined by KaiB (left), which encourages dephosphorylation. Driven by ATP, this cyclical pattern results in stable oscillations. From Phong et al. (2013). **Right**) A simplified view of the vertebrate molecular clock. The heterodimeric transcription factor Clock/Bmal1 activates transcription of the Per and Cry genes, the mRNAs of which are translated in the cytoplasm. The proteins of the latter two genes then heterodimerize, return to the nucleus, and suppress their own expression. The kinetics lead to stable 24-hour cycles. From Partch et al. (2014).