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21. TRANSCRIPTION

8 January 2023

All life relies on heritable information encoded in DNA, with the majority of cellular
functions being derived from products resulting from transcription of DNA into
RNA. Some RNAs, such as those in the ribosome, have direct functions, but for
protein-coding loci, the first-step messenger RNAs (mRNAs) must be translated
subsequently into strings of amino acids. Gene expression is almost always regulated
by specific DNA-binding proteins that activate and/or repress the target genes by
binding to their regulatory regions. Most genomes encode for hundreds to thousands
of such transcription factors (hereafter, TFs), each with unique DNA binding-motif
requirements called transcription-factor binding sites (hereafter, TFBSs). One can
certainly imagine simpler mechanisms for using DNA-level information to make
proteins (e.g., the use of no RNA intermediates at all), but these are the cards that
were dealt to LUCA, and there is now no way to erase this legacy of the earliest
stages of evolution.

Transcription factors are usually referred to as trans-acting, in the sense that
the genetic loci encoding for them are generally unlinked to (or at least physically
distant from) their regulatory targets. In contrast, TFBSs are generally referred to
as cis-acting, as they are physically adjacent to the affected coding regions. This
distinction can be blurred in prokaryotes, where a TF is sometimes encoded in the
same multilocus transcriptional unit (called an operon) as its target gene, and all
genes are linked in nonrecombining genomes.

Because transcription factors must bind to the regulatory sites of their target
proteins with high affinity relative to off-target sites, gene regulation provides an
excellent example of coevolution at the molecular level. A number of questions im-
mediately arise. How long and accurate does a TFBS have to be to ensure high
specificity with respect to its cognate TF? Are both the TF and the TFBS free to
wander in sequence space, provided an adequate level of joint matching is main-
tained? What happens when a TF services increasingly large numbers of genes?
How do new TF-TFBS interactions arise?

Gene transcription is generally not an autonomous, invariant process, but rather
is driven by extra- or intracellular information. The signals range from small inor-
ganic molecules to simple metabolites produced by other genes, which in turn acti-
vate (or suppress) other transcription factors, typically by modifying intermediary
regulatory proteins (themselves often transcription factors) in functionally signifi-
cant ways. Central to all of biology, this transfer of environmental information via
transcription factors to downstream gene expression is called signal transduction
and is the topic of Chapter 22. In addition, although TF proteins and their binding
sites provide the dominant mechanism for regulating gene expression, they are by
no means the only intervening factor. For example, post-transcriptional regulation
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can occur in the form of small complementary RNAs that can bind to transcripts,
and post-translational modifications (Chapter 14) can further modify the opera-
tional features of gene products. As an overall entrée into the overall field of gene
regulation, however, this chapter will focus on processes driven by TF proteins.

A central issue with respect to understanding transcription and its consequences
is stochasticity. Genes are generally present just once (haploids) or twice (diploids)
within cells, and as outlined in Chapter 7, mRNAs of active genes are often present
in just a dozen or fewer copies, with proteins typically being an order of magnitude
or more abundant. Owing to the small numbers of molecules of individual types
relative to the vast space within cells, intermolecular encounters are by no means
certain, and as a consequence there can be considerable cell-to-cell variation in gene
expression even in a genetically homogeneous population. Thus, before discussing
the biology and evolution of transcription, some simple quantitative principles re-
garding molecules in single cells need to be understood.

Molecular Stochasticity in Single Cells

The fitness of a cell ultimately depends on the quality, quantity, and stoichiometric
relationships of its underlying functional constituents. With typically just one (hap-
loids) or two (diploids) genes encoding for each protein within a cell, and stochastic
dynamics of transcription and translation at play, the numbers of individual pro-
teins vary among cells, even in a completely homogeneous external environment and
with genetically identical and uniformly aged cells. The many factors governing the
probability distributions of numbers of molecules per cell can be subsumed into six
coefficients: the rates at which an inactive gene enters the transcriptionally active
state and vice versa, kon and koff respectively; the rate at which an active gene
transcribes mRNAs, km; the rate at which an mRNA is translated into proteins,
kp; and the rates of degradation of mRNAs and proteins, δm and δp respectively
(Figure 21.1). We now consider the ways in which these various factors influence
the distributions of numbers of transcripts and proteins within different cells. For
heuristic purposes, the following assumes a simple system in which gene expression
is a function of the binding of a single activating TF, as is the case for many bacterial
genes.

Cellular mRNA abundances. We first consider the numbers of mRNAs found in
cells, nm, as this has cascading effects on protein numbers. As noted in Figure 21.2,
active cells gain mRNAs by transcription and lose them by degradation, whereas
inactive cells (with no TF engaged with the target TFBS) can only lose mRNAs.
Cells can also move back and forth between active and inactive states. The total
transition rates to smaller numbers of mRNAs increase linearly with increasing nm

simply because there are more targets for degradation, and as a consequence, such
systems converge on a steady-state distribution regardless of the starting point. As
outlined in Foundations 21.1, a particularly simple outcome is obtained when a gene
is constitutively turned on (koff = 0). In this case, nm is Poisson distributed, with
both the mean and the variance of the number of mRNAs per cell equaling the
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ratio of gain and loss rates, km/δm. The Poisson distribution is dominated by the
zero (mRNA-free) class when the mean is smaller than 1.0, has maximum and equal
probability in classes 0 and 1 when the mean is equal to 1.0, and converges on a
normal (bell-shaped or Gaussian) distribution with larger mean (Figure 21.2).

Regulated genes are not continuously expressed, but instead are in the active
state only a fraction of the time. Averaging over a sufficiently long period, this
fractional time is a simple function of the ratio of association and dissociation rates
of the TF,

Pon = kon/(kon + koff). (21.1)

This result arises because under steady-state conditions, Ponkoff must equal (1 −
Pon)kon. The number of mRNAs per cell is then necessarily more complex than
Poisson, as it involves a mixture of the distributions of nm in active and inactive
cells (see Foundations 21.1 for the full expression).

Contrary to common belief, gene regulation magnifies the variance of mRNA
numbers among cells (Figure 21.2). This occurs because transient switches from
active to inactive states result in a heavier weighting towards the categories with
small numbers of mRNAs. Indeed, if the rate of switching among active and inactive
states is sufficiently slow relative to the rate of degradation of mRNAs, a bimodal
distribution can result, with one fraction (the inactive cells) carrying few mRNAs
and the remaining active cells having an mRNA-number distribution close to that
expected under the constitutive-expression model. Further insight into the likely
specific forms of the distribution of mRNA molecules per cell requires quantitative
estimates for the four key parameters: km, kon, koff, and δm.

Based on observed rates of mRNA chain elongation (Chapter 20), and assuming
an average transcript length of ∼ 1 kb, an activated E. coli gene is capable of
producing as many as 50 to 150 transcripts/hour (Golding and Cox 2004; Proshkin
et al. 2010). Approximate estimates for the yeasts S. cerevisiae and S. pombe, again
largely based on chain-elongation rates, and assuming an average transcript length
of 2 kb, fall in the range of ∼ 10 to 35/hour (Lynch 2007a; Zenklusen et al. 2008; Sun
et al. 2012; Miguel et al. 2013). For mammalian cells grown in the lab, transcription
rates across the genome have a roughly log-normal distribution, with a median of 2
to 3 mRNAs/hour and an approximate range of 0.1 to 30/hour (Darzacq et al. 2007;
Schwanhäusser et al. 2011; Danko et al. 2013). Vertebrate genes typically contain
multiple large introns, which are transcribed prior to removal, and this contributes
substantially to these reduced rates. However, as the latter rates do not account
for the time genes spend in the off state, and a substantial fraction of transcription
events abort prior to complete elongation (> 90% in mammals; Darzacq et al. 2007),
they must underestimate km.

Transcript degradation rates are often estimated by inhibiting transcription and
following the subsequent decline in mRNA numbers. The half life of a molecule, T0.5,
denotes the time required for an initial concentration to decline by 50% and is related
to the degradation rate δ by assuming random, exponential decay:

0.5 = e−δT0.5 . (21.2)

In E. coli, ∼ 80% of mRNAs have half-lives between 3 and 8 mins, with a range of
1 to 15 mins and median ∼ 5 mins (Bernstein et al. 2002; Taniguchi et al. 2010).
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Estimates of median half lives of mRNAs in S. cerevisiae (Wang et al. 2002) and
mouse fibroblast cells (Schwanhäusser et al. 2011) are larger, 22 mins and 9 hours
respectively. Using the above expression, degradation rates of 0.14, 0.034, 0.012,
and 0.0013 per min are implied for half lives of 5 mins, 20 mins, 60 mins, and 9
hours.

The rates at which genes turn on and off transcriptionally, kon and koff, dictate
the dynamics of gene activation/inactivation. For example, the average time be-
tween bursts of transcription at a particular locus, which is equivalent to the mean
time that a silent gene remains off, is equal to 1/kon. Once turned on, a gene remains
transcriptionally active for an average interval of 1/koff, so the average number of
transcripts produced during a bout of activity is km/koff.

Unfortunately, little is known about the on and off rates, although So et al.
(2011) estimate kon to average about 0.003/sec in E. coli, with koff often being about
two to ten-fold lower. Rates of a similar order of magnitude have been observed in
mammalian cells (Darzacq et al. 2007). Given that mRNA burst sizes (per engaged
gene) are generally in the range of 1 to 20 (Sanchez and Golding 2013), it follows
that km must typically be on the order of 1 to 20 times larger than koff, which implies
km of the same order of magnitude noted above for this species. A primary determi-
nant of the on-off process in highly expressed genes appears to involve alternating
periods of engagement and dissociation of gyrase, a molecule used to relieve positive
supercoiling of the DNA that results from the progression of the transcription ma-
chinery (Chong et al. 2014), although in more lowly expressed genes, the stochastic
engagement with TFs is likely to be involved (below).

The preceding survey provides a mechanistic understanding of why the per-cell
numbers of mRNA molecules associated with individual genes are generally quite
small (Chapter 7). Suppose, for example, that the rate of full mRNA production by
an E. coli cell in the on state is km ' 50 mRNAs per active gene per hour, with a
median degradation rate of δm ' 8/hour, and the gene is turned on only a fraction of
the time (Pon < 1). At equilibrium, the average number of mRNAs per cell equals the
ratio of the production and elimination rates, µm = Ponkm/δm (Foundations 21.1),
so the theory predicts that genes in this species should commonly be represented
by fewer than 10 mRNAs per cell. This qualitative prediction is consistent with an
observed average number of 5 mRNAs/gene/cell (and a range of 0 to 100) in E. coli
(Lu et al. 2007; Li and Xie 2011).

Modifications of the theory will be necessary for eukaryotes, where there can
be a negative feedback between mRNA synthesis and degradation (Sun et al. 2012;
Haimovich et al. 2013), and where genes can have much more complex modes of
regulation involving multiple transcription factors with higher-order interactions,
long-distance enhancer elements, etc., especially in multicellular species (Hafner and
Boettiger 2023). Nonetheless, it remains clear that even in large eukaryotic cells,
the numbers of mRNAs per cell can be quite small, with a mean of just 10/gene
in S. cerevisiae (Lu et al. 2007; Zenklusen et al. 2008), and medians in the vicinity
of 20 in mammalian cells (Schwanhäusser et al. 2011; Marinov et al. 2014). In all
cases, there is a broad distribution around the mean, with the variance typically
exceeding the mean by several fold (Golding et al. 2005; Raj et al. 2006; Taniguchi
et al. 2010), as expected for genes that are not constitutively active.
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Cellular protein abundances. We now turn to the ultimate manifestation of
transcription, the numbers of protein molecules per cell. Because protein production
depends on the presence of mRNAs, the kinds of transcriptional noise noted above
naturally transmits to the level of translation. However, if a large number of proteins
are translated per mRNA, the degree of noise propagation can be reduced, owing to
the fact that the life span of a protein is typically greater than that of its associated
mRNA. For example, in S. cerevisiae, most proteins outlive their maternal mRNAs,
with the average ratio of half lives being ∼ 3 (Shahrezaei and Swain 2008; Martin-
Perez and Villén 2017). Likewise, in mouse fibroblast cells, the median half life of
a protein, ∼ 2 days (with a range of 3 to 500 hours), is ∼ 5× greater than that of
mRNAs (Schwanhäusser et al. 2011). The latter study also shows that translation
rates per mRNA are roughly 100× greater than transcription rates, with a mode of
∼ 200 and a range of 1 to 104 proteins/mRNA/hour. Thus, the temporal variation
in protein numbers per cell is expected to be dampened in comparison to that for
mRNAs (Figure 21.3).

As a consequence of their greater half lives and higher rates of production,
proteins also tend to be much more abundant in cells than their cognate mRNAs
(Chapter 7). For example, the average ratio is 450 in E. coli, 5100 in S. cerevisiae,
and 2800 in mammalian fibroblasts (Ghaemmaghami et al. 2003; Lu et al. 2007;
Schwanhäusser et al. 2011). Bacterial cells have protein-copy numbers typically
ranging from 10 to 20,000 per gene (Ishihama et al. 2008; Malmström et al. 2008;
Taniguchi et al. 2010). Yeast proteins fall in the range of 100 to 106 copies per cell
with a median of ∼ 4000 (Ghaemmaghami et al. 2003; Newman et al. 2006; Lu et al.
2007), and mammalian proteins range from 10 to 107 copies per cell with a median
of 50,000 per expressed gene (Schwanhäusser et al. 2011). Notably, transcription
factors tend to be the rarest proteins within cells (Ghaemmaghami et al. 2003; Li
et al. 2014; Marinov et al. 2014).

Two key determinants of the level of protein production are the number of
mRNAs produced by active genes over the typical life span of a protein,

a = km/δp, (21.3a)

and the average number of proteins translated per life span of an mRNA,

b = kp/δm, (21.3b)

where in both cases the average life span of a molecule is equal to the inverse of the
decay rate. Together with the transcriptional activation and deactivation rates, kon

and koff, these parameters define the distribution of protein numbers among cells
(Shahrezaei and Swain 2008). The mean number of proteins per cell is a simple
extension of the expected value for mRNAs (µm = Ponkm/δm, from Foundations
21.1),

µp =
µmkp

δp
= Pon · a · b. (21.4a)

The variance in number of protein molecules among cells is described by

σ2
p = µp

(
1 + b+

ab(1− Pon)δp
δp + kon + koff

)
, (21.4b)
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which reduces to σ2
p = µp(1 + b) for a constitutively expressed gene (Thattai and van

Oudenaarden 2001). Thus, for individual genes, the dispersion of protein numbers
among cells is broader than that expected under a Poisson distribution.

These composite expressions define the wide variety of ways in which cells might
control their steady-state numbers of active proteins, e.g., by adjusting rates of
engagement, elongation, and decay. Several observations are suggestive as to how
such alterations in protein expression are actually brought about. For example,
Schwanhäusser et al. (2011) note a strong correlation between the number of protein
molecules per cell and the translation rate, and Wang et al. (2002) find that the
decay rates of mRNAs in yeast are coordinated among protein-coding loci whose
products interact stoichiometrically. In E. coli and S. cerevisiae, for proteins that
assemble in complexes, the relative rates of protein production associated with each
locus are directly proportional to the relative numbers of molecules required in
each assembly, suggesting coordinated expression so as to maintain stoichiometric
balance (Li et al. 2014). Orthologous genes in closely related yeast species often
achieve similar levels of overall expression via compensatory changes in rates of
transcription and mRNA degradation (Dori-bachash et al. 2011). Such a pattern
is compatible with a bivariate drift barrier in which a particular phenotype can be
achieved by interchangeable mechanisms.

Expression noise and adaptation. The preceding overview makes clear that
phenotypic noise is an inevitable consequence of the structure of biology, resulting
from the stochastic features of transcription-factor binding and high rates of mRNA
decay. Although muted somewhat, noise created at the level of bursty transcription
still has cascading effects at the level of translation. There is essentially no way
to completely eliminate such between-cell variation, and based on thermodynamic
principles, any process for regulating gene-expression stochasticity must require an
energetic investment. Nonetheless, several authors have suggested that expression
noise may be promoted by natural selection as a means for coping with a variable
environment (Fraser et al. 2004; Tenăse-Nicola and ten Wolde 2008; Wang and
Zhang 2011; Levy et al. 2012; Liu et al. 2015; Wolf et al. 2015), operating as a sort
of bet-hedging strategy (Chapter 22).

Part of the motivation for this argument is shown in Figure 21.4 – if the ex-
pected phenotype (in this case mean expression level) of a particular genotype is
far from the optimum dictated by environmental factors, only genotypes produc-
ing sufficiently variable progeny will have some hope of gene transmission to the
next generation, as the offspring of more noise-suppressed genotypes will all have
near-zero fitness. Note, however, that once the mean phenotype evolves to be in
accordance with the environmental optimum, the opposite occurs – all members of
noise-suppressed genotypes have high fitness, whereas individuals in the tails of the
distribution for highly variable genotypes will have near zero fitness. The point has
been demonstrated in an experiment in yeast in which both the mean and variance
of expression was altered in various alleles for a key gene (Duveau et al. 2018).

There are, however, multiple reasons for skepticism as to whether selection
can modulate expression noise on a gene-by-gene basis. First, it is far from clear
whether environmental optima exhibit sufficiently large fluctuations to encourage
the evolution of an intermediate level of noise, and it is equally unclear whether
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environments are typically constant enough to promote noise minimization. Second,
any modifier for expression noise would need to be tightly linked to the modulated
gene, most likely in the gene body itself, else any benefit associated with the modifier
would be quickly disconnected after a few generations of recombination. Third, as
outlined in detail at the end of Chapter 9, selection on the level of phenotypic
variance production is a second-order effect and, at best, a very weak evolutionary
force, as individual genotypes are not filtered on the basis of their own genetic merits
but via the nonheritable features of their offspring. Most notably, phenotypic noise
actually reduces the response to selection by diminishing the relationship between
individual phenotype and the underlying genotype. Related issues on this particular
topic are covered by Matsumoto et al. (2015) and Mineta et al. (2015).

Finally, and perhaps most significantly, gene-expression noise is an intrinsic
function of average expression, so any selection on the former and vice versa will
naturally have cascading effects on both the target locus and other cellular partic-
ipants. Taking the ratio of the standard deviation in protein number relative to
the mean (i.e., the coefficient of variation, or CV), it can be seen from the leading
term in Equation 21.4b (which defines the square of the standard deviation), that
the CV is roughly inversely proportional to the square root of the mean number of
proteins. Lestas et al. (2010) showed more generally that the CV is inversely propor-
tional to the 0.25 to 0.5 power of the number of proteins produced per mRNA. This
means that reducing the variation in protein expression by 50% requires roughly
a 4- to 16-fold increase in the number of proteins relative to mRNA molecules.
Thus, noise suppression comes at the expense of added protein production, whereas
noise enhancement will generally require a reduction in protein number, which may
compromise basic aspects of cell biology.

A related issue here is that all of the results introduced above were derived under
the assumption of haploidy (Foundations 21.1). Diploidy (common in eukaryotes)
might further reduce the level of noise depending upon the degree to which ex-
pression is coordinated between the two copies of a gene. If allelic expression is
completely independent, as some evidence suggests (Sepúlveda et al. 2016; Skinner
et al. 2016), then having two genes expressed simultaneously may give a ∼ 15% re-
duction in the level of noise. On the other hand, with their more complex modes of
regulation (often involving multiple transcription factors and/or accessory proteins),
eukaryotic genes may commonly exhibit a gradient of transcriptional states (rather
than simple on/off) (Corrigan et al. 2016), which will further influence the noise
process. These matters seem not to have entered the conversation over the many
potential factors that might favor diploidy (Chapter 10).

The Basic Biology of Transcription

Gene transcription is carried out by multi-subunit DNA-dependent RNA poly-
merases (Chapter 20), which we will simply call RNA polymerases. However, such
complexes are generally nonautonomous in the sense that one to several accessory
proteins, including TFs, must be present simultaneously for transcription activation
(Jolma et al. 2015; Haberle and Stark 2018; Cramer 2019). The core promoters upon
which the transcription machinery assembles typically reside within 100 or so bp of
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transcription-initiation sites, whereas enhancer elements containing the TFBSs are
generally located further upstream (in multicellular species sometimes up to 100,000
bp away; Hafner and Boettiger 2023). Individual TFs often service multiple genes,
which facilitates coregulation of gene expression, but specialized one-to-one relation-
ships between TFs and their client genes are not uncommon. For example, seven
TFs control the expression of ∼ 50% of regulated genes in E. coli, whereas ∼ 60 TFs
(about one fifth of the TFs in this species) service single genes (Martinez-Antonio
and Collado-Vides 2003).

Liaisons between TFs and their target TFBSs on the DNA are usually governed
by hydrogen bonds and van der Waals attractions between the two molecules. How-
ever, as a consequence of the negatively charged phosphate backbones of the DNA
and positively charged residues on the protein, all TFs also inevitably engage in
promiscuous interactions with off-target sites. As discussed further below, these un-
avoidable nonspecific interactions impose a substantial challenge for any TF, which
must avoid too great of a burden of sequestration in nonfunctional locations while
retaining a high enough affinity to its own specific binding sites.

Eukaryotic transcription raises additional issues in that the chromosomes are
regularly wrapped around nucleosomes, formed from histones, and often further
packed into higher-order structures. On the one hand, such structures can reduce the
accessibility of a TF to a hidden TFBS, but the occlusion of TFs from nonregulatory
DNA can also reduce the time spent on nonproductive searching (Charoensawan et
al. 2012; Thurman et al. 2012). In addition, some proteins such as cohesins, which
encircle sister chromosomes during cell division (Chapter 10), help recruit TFs to
localized regions (Yan et al. 2013).

Many dozens of TF families exist across the Tree of Life, each structurally reliant
on different DNA-binding domains. However, although each TF has maximum
affinity for a specific DNA motif, there is no general regulatory code in TFs, i.e., no
specific language involving one-to-one recognition matching between the amino-acid
sequence of a TF and the nucleotide sequence of its binding site. Typically, 10 to 50
amino-acid residues are involved in contacts with the DNA, whereas TFBS motifs
generally consist of 6 to 30 nucleotides, usually near the lower end, especially in
eukaryotes (Luscombe and Thornton 2002).

A physical model for transcription-factor binding. The universal mode of
transcription, involving the interaction of a specific protein (the TF) with a spe-
cific DNA binding site (the TFBS), provides a compelling platform for developing
an evolutionary theory of gene expression couched in terms of the biophysics of
intermolecular associations (Bintu et al. 2005). However, because many TFs are
commonly present in less than a few dozen copies per cell, an understanding of
transcription requires insight into the consequences of stochastic aspects of single-
cell biology (as opposed to measuring just the average features of entire populations).
Thus, to move forward, we require a probabilistic framework for understanding the
likelihood of TFs being bound to their specific TFBS targets in individual cells.

Consider a TF that recognizes an optimal binding motif containing ` key nu-
cleotide sites. Empirical data from a variety of sources suggest that the average
energetic cost of a single-base mismatch is ' 2 in Boltzmann units of kBT (which
is ' 0.6 kcal/mol at most biological temperatures) (Table 21.1). Thus, under the
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assumption that binding strength scales linearly with the degree of correspondence
between a TFBS and the optimal binding motif of its TF, the relevant phenotype
from the perspective of binding efficiency of a target site can be viewed as the num-
ber of matches with the optimal recognition sequence (m ≤ `). Numerous empirical
studies support the additivity assumption as a first-order approximation (von Hip-
pel and Berg 1986; Sarai and Takeda 1989; Takeda et al. 1989; Fields et al. 1997;
Shultzaberger et al. 2010), although higher-order effects involving the shape of TF-
BSs can also contribute to the overall binding energy (Yang et al. 2013; Le et al.
2018).

Given a potential TFBS sequence with a particular binding energy for a specific
TF, we wish to know the probability of occupancy by the cognate TF, Pon, as
this is a minimal requirement for expression of the associated gene. Recall from
Equation 21.1 that Pon can be expressed in terms of association/dissociation rates.
Here we take a related but more mechanistic approach, treating Pon as a function of
both the binding site and the features of the intracellular environment that restrict
the site’s access to cognate TFs. Clearly, Pon will increase with the number of TF
molecules in the cell (Ntf), but equally important are the ways in which individual TF
molecules can become side-tracked by binding to alternative genomic sites. Other
genes serviced by the TF (numbering Not, where ot denotes off-target) will compete
for the pool of TFs, but nonspecific binding of TFs across the genome can be
numerically more important. Letting G denote the total genome size (in bp), because
` � G, there are essentially G such nonspecific sites in a haploid cell (with varying
degrees of affinity). Letting the excess scaled binding energy of a target TFBS be
2m, from Foundations 21.2 the probability that a specific target TFBS is occupied
by its TF is

Pon '
1

1 +Be−2m
, (21.5)

where B = G/(Ntf−Not) is a measure of the concentration of background (nonspecific)
binding sites relative to the number of TF molecules available for the specific target
site. As B →∞, Pon → 0, whereas as m→∞, Pon → 1.

A rough idea of the magnitude of B can be inferred by noting that G is generally
in the range of 106 to 1010 bp, with prokaryotes falling at the lower end and mul-
ticellular eukaryotes at the higher end of the range (Lynch 2007a). For the model
bacterium E. coli, the numbers of molecules per cell for particular TFs, Ntf, are often
in the range of 100 to 1000, with just a few cases ranging as high as 50,000 (Robison
et al. 1998). Somewhat lower numbers are estimated for another bacterium Lep-
tospira interrogans (Malmström et al. 2009). In such species, it is unusual for the
number of genes serviced by a particular TF, to exceed 100. Thus, taken together,
these observations suggest a range for B on the order of 103 to 106 for prokary-
otes. For the yeast S. cerevisiae, proteomic data suggest that the average number
of molecules for individual TFs is on the order of 8000 per cell (Ghaemmaghami et
al. 2003), so with a genome size of 12 Mb, B should be in the vicinity of 103 to 104.
Proteins within mammalian cells appear to be about 10× as numerous as those in
yeast (Schwanhäusser et al. 2011), but with a genome size of ∼ 3000 Mb, B can be
expected to be � 103.

All of these estimates of background interference assume that the primary mech-
anism reducing TF accessibility is nonspecific binding on DNA. If other sources of
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interference exist (such as promiscuous binding to other proteins), B would be ac-
cordingly higher. On the other hand, DNA binding proteins, such as histones in
eukaryotes, could reduce B by restricting access of a TF to only a fraction of the
genome. Thought of in a more general way, the composite parameter B can be
viewed as a measure of the totality of cellular features working against the binding
of a TF to a specific cognate TFBS.

Equation 21.5 provides insight into the conditions necessary for a high prob-
ability of binding. For example, m = 0.5 ln(B) represents a key pivot point below
which background interference results in Pon < 0.5. If the binding probability is to
exceed 0.99, the number of matches must exceed 6 for B = 103 and 11 for B = 107

(Figure 21.5). Thus, unless the level of background interference greatly exceeds
B = 107, there is little to be gained in terms of binding probability for a motif in
excess of a dozen bases. This means that a considerable amount of mismatching can
be tolerated for a TFBS motif more than a dozen nucleotides in length.

The results in Figure 21.5 highlight two physical constraints on the basic process
of transcription regulation by the binding of TFs to DNA. First, because mismatches
come in approximately discrete packets (with relative binding energy ∼ 2/site), the
opportunities for fine-tuning gene expression by altering the numbers of mismatches
in a TFBS may be limited, although variation around this expectation (for example,
from not all mismatches having exactly the same consequences) will provide some
flexibility. Modulation of gene expression might also be accomplished by altering the
numbers of TFs residing inside cells (which will influence B). However, a secondary
consequence of altering the concentration of a TF is that different client genes will
also be affected.

Table 21.1. Features of the motifs of well-studied transcription factors. Motif sizes
are based on consensus sequences. The estimated costs of mismatches are obtained from
binding-strength experiments in which single-base changes were made in motifs. Costs of
single-base mismatches are in units of kcal/mol associated with background thermal motion;
these average to 1.4 across the full set of studies, or in terms of Boltzmann units (kBT ' 0.6
kcal/mol) to 2.3.

Motif Cost of Mismatch
TF Species (bp) Mean (Range) References

CI Lambda phage 17 1.4 (0.5 – 3.5) Sarai and Takeda (1989)
Cro Lambda phage 9 1.4 (0.5 – 2.5) Takeda et al. 1989
Mnt Salmonella phage P22 21 1.0 (0.3 – 1.6) Fields et al. (1997);

Berggrun and Sauer (2001)
CRP Escherichia coli 22 1.7 (0.9 – 2.5) Gunasekera et al. (1992);

Kinney et al. (2010)
CRP Synechocystis sp. 22 1.8 (0.7 – 3.0) Omagari et al. (2004)
ArcA Shewanella oneidensis 15 1.3 (0.1 – 3.4) Schildbach et al. (1999);

Wang et al. (2008)
Gcn4 Saccharomyces cerevisiae 11 1.0 (0.5 – 1.7) Nutiu et al. (2011)
c-Myb Homo sapiens 6 1.6 (0.6 – 2.8) Oda et al. (1998)

Second, life’s transcription mechanism comes at a significant energetic cost, in
that to ensure that a particular gene is turned on, a substantial excess number of
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TF molecules must be produced to compensate for the unproductive engagements
occurring at nonspecific sites. For example, rearrangement of Equation 21.5 shows
that for a TFBS motif with m = 8 matching bases to achieve a 0.9 probability of
being bound to its cognate TF, 10 and 1000 TF molecules are required in cells with
genome sizes of 107 and 109 bp, respectively, and Pon = 0.99 elevates these numbers
to ∼ 110 and 11, 000. Thus, an unavoidable consequence of biology’s mode of gene
expression is that far more TFs must be produced than the numbers of genes to be
serviced. This cost of living with a system that relies on mRNA production for gene
expression necessarily increases in eukaryotic cells with larger genomes.

Encounter rates between TFs and their binding sites. The preceding anal-
yses implicitly assume that the distribution of TFs within a cell is typically in a
dynamic steady state of bound and unbound molecules. At first glance, the chances
of a TF locating a specific cognate TFBS in a reasonable amount of time would seem
to be daunting, but as outlined in Foundations 21.3, the biophysical properties of
cells are such that localization can generally be achieved in a matter of a few seconds
or less in bacterial cells.

Despite their passive transport, TFs locate their target sites at rates exceeding
the three-dimensional diffusion limit (Riggs et al. 1970), an observation that moti-
vated the facilitated-diffusion model (von Hippel and Berg 1989). Given the minute
sizes of individual TFBSs, a newly arisen TF molecule will essentially always first
encounter a nonspecific site on a chromosome before locating a proper, more energet-
ically favorable target. The search process involves repeated association-dissociation
events involving one-dimensional sliding along DNA molecules interspersed with
three-dimensional jumping to new locations. During such episodes of intersegmen-
tal transfer, TF molecules are kept in the vicinity of the DNA, thereby avoiding the
much larger and unproductive search space of the entire cytoplasm/nucleoplasm.
Such three-dimensional wandering also minimizes the redundant interrogation of
localized chromosomal space that would occur if a nondirected one-dimensional dif-
fusion process followed first contact. Finally, it appears that the search for appropri-
ate DNA-binding sites is facilitated by protein-protein interactions within clusters
of transcription factors, not just by direct DNA-binding processes (Brodsky et al.
2020). Reviews covering many of the technical issues can be found in Gowers et al.
(2005), Halford and Marko (2004), Halford (2009), Kolomeisky (2011), Zhou (2011),
Normanno et al. (2012), and Staller (2022).

The extent to which various species alter the spatial configurations of their chro-
mosomal DNA to further assist in the search process remains unclear. However, the
spatial issues incurred by the large cells of eukaryotes are of particular interest. The
volumes of the nuclei of eukaryotic cells are typically larger than entire prokaryotic
cells, and this can result in mean search times of individual TF molecules for a tar-
get TFBS of 1 to 200 minutes within the nuclear environment alone (Foundations
21.3). Although the overall search process can be sped up by producing more TF
molecules, there is the additional issue of the cytoplasmic cell volume (within which
TFs arise by translation), which is commonly 10 to 100× that of the nucleus. All
other things being equal, this would result in an increase in the search time by 10
to 100× were the genome not concentrated within a nuclear envelope. Thus, al-
though a number of hypotheses have been proposed for the evolution of the nuclear



12 CHAPTER 21

envelope and its relevance to the expanded sizes of eukaryotic cells (Chapter 15),
the challenges of gene expression should be included in this list. The rate of gene
expression in large cells might be extremely compromised if the genome were not
confined to the restricted space of the nucleus.

Coevolution of Transcription Factors and Their Binding Sites

To be expressed, essentially every gene in every genome requires interaction with
at least one TF. This implies that the TF mode of gene regulation must have been
present in LUCA. Nonetheless, because many TFs service multiple genes, a fairly
small fraction of most genomes is allocated to TF production, typically 1 to 5% of
the protein-coding genes within a genome. Among prokaryotic species, the number
of TF genes ranges from ∼ 5 to 500, scaling quadratically with the total number of
protein-coding genes. Eukaryotic genomes generally encode for at least 100 TFs,
with well over 1000 being harbored in multicellular species, and the scaling with
total gene number being closer to linear (Reichmann et al. 2000; van Nimwegen
2003; Aravind et al. 2005; Iyer et al. 2008; Charoensawan et al. 2010).

Across the Tree of Life, many dozens of TF families have been identified based
on the unique physical structures of their DNA-binding domains. However, changes
in the regulatory vocabulary and the reading machinery have evolved on various time
scales. Only 2% of specific DNA-binding domain families are shared across bacteria,
archaea, and eukaryotes, and no clear TF orthologs are known across these three
superkingdoms (Charoensawan et al. 2010). Dramatic differences appear among the
major eukaryotic lineages as well (Reichmann et al. 2000). These observations alone
suggest a substantial turnover in the specific TFs used in various lineages, a pattern
that repeats itself at lower levels of phylogenetic organization, as noted below.

There has been much speculation, especially among those doing comparative
developmental biology in animals, that eukaryotic morphological diversity has been
driven by the exploitation of novel TF families and their recruitment to specific
sets of genes. However, although there is no question that developmental evolution
must involve modifications in gene regulation, it does not follow that the origin
of multicellular complexity is an inevitable outcome of transcriptional complexity.
As noted above, eukaryotes do not generally invest proportionately more in their
TF repertoires at the genomic level than do prokaryotes. Moreover, many of the
key TFs deployed in complex development are present in the unicellular relatives of
animals and land plants (de Mendoza et al. 2013; Richter et al. 2018).

Another common argument is that most changes in gene regulation are a con-
sequence of alterations in the cis-regulatory logic residing upstream of genes rather
than a result of modifications in the agents of transcription, with some going so far
as to claim that cis-regulatory modifications are the units of evolutionary change
(Carroll et al. 2001; Davidson 2001; Wray 2007). The usual logic underlying this
assertion is that because individual TFs often service multiple genes, alterations of
binding-site specificities of TFs are likely to have large-scale, negative pleiotropic
consequences for fitness. Under this view, a change in expression pattern with
minimal pleiotropic effects on multiple traits can only be achieved by recruiting,
modifying, or eliminating TFBSs on a gene-by-gene basis. However, not all muta-
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tions arising in a gene with pleiotropic effects need themselves be pleiotropic, and
as discussed further below, considerable evidence suggests that functional changes
in TFs often have minimal side consequences (Hsia and McGinnis 2003; Lynch and
Wagner 2008; Wagner and Lynch 2008). Moreover, the target size for trans-acting
mutations can be hundreds of times larger than that for cis-acting mutations (Gru-
ber et al. 2012; Metzger et al. 2016), meaning that by sheer numerical dominance,
such mutations can be quantitatively important.

General observations. Although high-throughput methodologies for genome-wide
identification of TFs and their corresponding TFBSs promise to substantially expand
our understanding of how such systems diversify (e.g., Berger and Bulyk 2009; Carey
et al. 2012; Furey 2012; Ding et al. 2013; Smith et al. 2013; Levo and Segal 2014; Hill
et al. 2021), most current insight into the mechanisms of gene-regulatory evolution
still derives from observations from the usual key model systems – the bacterium E.
coli, the yeast S. cerevisiae, the fly D. melanogaster, mouse, and human. From this
limited set of taxa, several generalizations have started to emerge, imposing a need
for evolutionary explanation.

First, prokaryotes typically harbor substantially longer consensus TFBSs than
do eukaryotes (Stewart et al. 2012). Moreover, unlike many eukaryotic TFBSs,
prokaryotic binding sites are often palindromic in nature, with each half sequence
being 7 to 11 bases in length and recognized by one of the two members of a ho-
modimeric TF.

Second, the evolutionary features of TFs appear to depend on the number of host
genes serviced. For example, from comparisons of multiple gammaproteobacteria,
Rajewsky et al. (2002) found that TFs with larger numbers of target genes are more
evolutionarily conserved at the amino-acid sequence level and with respect to the
TFBS recognition sequence. Nevertheless, Sengupta et al. (2002) observed a decline
in binding-site specificity with increasing numbers of genes serviced by a TF in both
E. coli and yeast. In principle, the latter condition may evolve so as to minimize
the mutational burden on an organism, as a large number of TFBSs increases the
overall mutational target size. However, an alternative explanation is that TFs with
low specificity are recruited more frequently into various regulatory pathways over
evolutionary time.

Third, in eukaryotes, multiple motifs for a particular TF are frequently present
in the upstream regions of client genes (e.g., Gotea et al. 2010). Although it is
commonly argued that such redundancy is maintained by natural selection, TFBS
clustering can also arise naturally by small-scale duplication processes (Lusk and
Eisen 2010; Nourmohammad and Lässig 2011). Thus, while the presence of multiple
binding sites might help ensure that an adjacent gene will be activated, there is as
yet no formal evidence that such configurations are anything more than a simple
consequence of physical processes.

Evolutionary distributions of binding-site motifs. Transcription factors and
their binding sites provide an explicit framework for evolutionary analysis, in that
specific DNA-level features can be directly related to fitness (Gerland and Hwa 2002;
Berg et al. 2004; Lässig 2007; Stewart et al. 2012; Lynch and Hagner 2015; Tuǧrul
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et al. 2015). A common approach to understanding the evolution of binding motifs
is to consider individual fitness to be a linear function of the fraction of time that a
TFBS with m matching sites is expected to be bound by its cognate TF, e.g.,

W (m) = 1 + αPon(m), (21.6)

where α is a scaling factor relating binding probability to fitness, and Pon(m) is
defined as Equation 21.5. As α→ 0, W (m)→ 1, implying neutrality. Equation 21.6 is
often referred to as a mesa fitness function, because fitness increases asymptotically
from 1 to (1 + α) as the probability of gene activation increases from 0 to 1.

Alternative models relating m to fitness are certainly possible, but once W (m)

is defined, and additional information is available on rates of mutational movement
between alternative TFBS states, a number of basic issues regarding TFBS evolution
can be examined using the methods outlined in Foundations 21.4. For example, it
is well known that the genomic set of binding sites associated with a particular
TF often exhibit variable motif sequences. Although such variation might partially
result from selection for alternative levels of locus-specific gene expression, because
of the diminishing-returns nature of the fitness function (Figure 21.5), variation in
motif matching is also expected to arise naturally as selection pushes a population
towards the drift barrier, where alternative high-m states are selectively equivalent
(Berg and von Hippel 1987).

Over evolutionary time, the frequency distribution of the number of matches in
the various TFBSs serviced by a particular TF is expected to reach an equilibrium
between the mutational forces causing mismatches and the selective forces favoring
mutant alleles with higher specificity. As always, the efficiency of selection is mod-
ulated by the power of genetic drift, which is inversely proportional to the effective
population size (Ne). From Foundations 21.4, provided all nucleotides mutate to all
others at equal rates, the equilibrium distribution takes on a simple form,

P̃ (m) = C

[(
`

m

)
3`−m

]
e2NeW (m), (21.7)

where C is simply a normalization constant that ensures that the full set of proba-
bilities, P̃ (m), sum to one.

The equilibrium distribution P̃ (m) can be viewed as either the long-term average
probability of states at a particular TFBS as it wanders through evolutionary time,
or as the expected distribution of m for a full set of equivalent TFBSs (for different
genes within a particular host genome) at any one point in time. The exponential
term in Equation 21.7 is a constant when W (m) is invariant, and so the term within
brackets is equivalent to the expected distribution in the absence of selection, P̃n(m).
Thus, Equation 21.7 indicates that the evolutionary distribution of binding-site
matching is equal to the neutral expectation weighted by an exponential gradient of
the fitness surface relative to the power of random genetic drift, W (m) divided by
1/(2Ne).

Solution of Equation 21.7 illustrates several general principles (Figure 21.6).
First, the equilibrium distribution is completely independent of the mutation rate.
The factor of three enters because it is assumed that there are three ways for a
matching nucleotide to mutate to a mismatch but only one way for a reversion to
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arise. Because the former is simply a multiplicative function of the latter, the actual
mutation rate cancels out.

Second, regardless of the set of parameter values, substantial variation in m is
almost always expected among sites. Unless the motif size is small (e.g., ` = 8)
and levels of background interference and selection pressures are very high, most
motifs are expected to contain mismatches. This behavior arises because the alter-
native states in the upper range of m are selectively equivalent with respect to each
other owing to the plateau of Pon(m) at high m. Indeed, with a motif size of 16
bp, essentially no TFBS is expected to be perfect, unless the power of selection is
unrealistically high (Neα ≥ 106). The exact form of P̃ (m) will vary with different
forms of the fitness function, W (m), but provided the upper end of W (m) becomes
progressively flatter, the drift barrier combined with the multiplicity of sequences
with identical matching levels will encourage substantial motif variation. Thus, the
theory provides an explicit nonadaptive explanation for the high level of interspecific
divergence in TFBS motifs routinely seen in comparative studies as well as for the
substantial variation in motif sequences at the intraspecific level (Zheng et al. 2011;
Heinz et al. 2013).

Third, with relatively weak selection pressure (Neα � 1), P̃ (m) is very heavily
skewed towards small (but nonzero) numbers of matches (essentially the neutral
expectation). This intrinsic weighting towards low numbers of matches is due to
both biased mutation pressure and the high multiplicity of configurations leading to
the same m with increasing numbers of mismatches.

Fourth, because the neutral distribution is heavily weighted toward low m, there
can be a sharp “phase transition” as Neα crosses the threshold value of ∼ 1.0.
Notably, cases can even exist in which P̃ (m) is bimodal, with a peak to the left
resulting from the high multiplicity of motif configurations driven by mutation and
a peak to the right driven by selection pressure. As the motifs within the different
peaks of such distributions will deviate in both length and sequence, this result may
help explain the widespread use of secondary TFBS motifs by TFs (noted above).

Fifth, although the preceding results have been derived for a interaction in which
the TF is evolutionarily invariant (e.g., due to pleiotropic constraints associated with
its use with other genetic substrates), when the TF coevolves with its TFBS, the
overall results noted above largely remain except that the average equilibrium degree
of matching declines (Lynch and Hagner 2015). This results because mutations in
both the TF and the TFBS present a constant stream of changes in each other’s
selective landscape, in effect preventing strong specialization. A side consequence
of this behavior is that when both components of a TF/TFBS system are free to
evolve, the underlying recognition motif is free to explore all of sequence space,
conditional on the constraint of maintaining an adequate degree of matching at all
points of time. This results in the origin of incompatibilities of TF/TFBS pairs in
different phylogenetic lineages as the two systems drift apart to the extent that they
no longer recognize each other in heterospecific combinations.

Sixth, in the case of a one-to-many scenario in which the TF interacts with
multiple TFBSs, there can be a substantial degree of asymmetry in the rates of
evolution of the two components (Lynch and Hagner 2015). Owing to its need to
satisfy multiple partners, the TF experiences the strongest selective constraints,
with the overall rate of evolutionary divergence declining with increasing numbers
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of partners. In effect, the master controlling element is no longer free to coevolve
with single interacting partners, becoming increasingly constrained to accept only
the small subset of mutations that is either effectively neutral for all partners or
the even smaller subset with a net overall positive impact. In contrast, the TFBSs
themselves continue to evolve in an essentially independent fashion, with distribution
and rate features identical to what would be expected in a highly specific system,
e.g., Equation 21.7. These results appear to be consistent with the observations,
noted above, that TFs with larger numbers of target genes are more evolutionarily
conserved at the amino-acid sequence level and evolve lower levels of binding-site
specificities.

Finally, the theory helps clarify why TF motifs are typically so small. Owing
to the saturating binding potential embodied in Equation 21.5, even the strongest
levels of selection are unlikely to lead to mean binding-motif lengths in excess of 12
bp. Although an overly short TF recognition motif may lead to excessive spurious
binding to off-target sites, the challenges here are not too severe. Assuming equal
nucleotide usage, the expected number of appearances of any particular sequence
of length ` in a genome containing G bp is G(1/4)`. Setting this equal to one, and
rearranging, we find that less than one random motif is expected to be present by
chance on each strand if the motif size exceeds `∗ = ln(G)/ ln(4). For genome sizes
of 10 to 1000 Mb, `∗ = 12 to 15 bp. Combined, these two points provide a simple
explanation for why TFBSs are generally shorter than 15 bp in length.

Although Stewart et al. (2012) have argued that TFBS evolution reflects an
inherent tradeoff between specificity to enhance the stability of gene expression
(which increases with matching motif length) and robustness to mutational break-
down (which decreases with increasing length), it is clear that less than maximum
matching lengths arise naturally as a consequence of mutation-selection balance.
Direct selection for mutational robustness, a second-order effect, need not be in-
voked. In addition, all of the above results indicate that, without direct empirical
validation, the presence of motif variation in genomes, at both the intraspecific
and interspecific levels, should not be taken as evidence of adaptive fine-tuning of
individual loci.

Application of the models. The general model embodied in Equation 21.7 can
be used for more than simply predicting the features of TF/TFBS systems. As-
suming that the set of TFBSs in a particular species has evolved to its equilibrium
distribution of motifs, one can compare the observed distribution of usage to the
neutral expectation to estimate the strength of selection on functional binding sites,
2Nes(m), necessary to account for the deviations between the two. This follows by
rearranging Equation 21.8 to

W (m) =

(
1

2Ne

)
ln

(
P̃ (m)

P̃n(m)

)
. (21.8)

where P̃n(m) is expected distribution under neutrality, which can be obtained from
random nucleotide motifs exclusive of known binding sites, i.e., as a fraction of
random genomic stretches of length ` containing m matches to the optimal motif.
Note that this sort of application makes no assumptions about the form of the fitness
function, and instead relies on the data to infer W (m).
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Mustonen and Lässig (2005) performed such an analysis for the cAMP receptor
protein (CRP) in E. coli, showing that 2Nes(m) for known TFBS sites for this factor
is often in the range of 5 to 10, with the strength of negative selection declining
monotonically with increasing binding affinity (Figure 21.7). An analysis of Abf1
binding sites in yeast yielded similar results (Mustonen et al. 2008), and an analysis
of 12 additional transcription factors revealed a positive relationship between fitness
and binding energy in each case (Haldane et al. 2014). Thus, all existing analyses
appear to support the use of a fitness model that assumes a positive association with
binding affinity, as in Equation 21.7. This type of analysis also harbors substantial
potential for TFBS discovery in a genome using thermodynamic principles rather
than consensus sequence motifs (Djordjevic et al. 2003; Mustonen and Lässig 2005;
Lässig 2007; Mustonen et al. 2008).

As noted above, P̃ (m) is best described as a quasi-equilibrium, in that each in-
dividual motif is expected to wander across the entire distribution over evolutionary
time, as described in Equation 21.4.1, with the entire ensemble of motifs retain-
ing the steady-state pattern. This general principle leads to a prediction – if the
model is correct, and individual motifs are not being kept in their specific states by
locus-specific selective pressures, comparison of the differences in binding energies
among orthologous sites in different species should yield variances in motif binding
consistent with the diffusion model. Observations on the Abf1 transcription factor
in four species of Saccharomyces are consistent with these expectations (Mustonen
et al. 2008). Thus, consistent with theory, the specific sequences of functional TF-
BSs appear to be conserved only to the extent that they yield levels of matching
consistent with the relevant domain of drift-mutation-selection equilibrium. Due to
the multiplicity of binding-site configurations deviating from the optimum, there is
room for substantial sequence change via compensatory mutations.

Evolution of Pathway Architecture

Despite the centrality of TFBSs to gene expression and the common conservation of
motifs between distant lineages (Nitta et al. 2015), a diverse set of observations indi-
cates that TFBS locations and motif sequences can vary dramatically among closely
related lineages, often with no apparent phenotypic consequences (Borneman et al.
2007; Doniger and Fay 2007; Dowell 2010). These sorts of changes are apparently
not simply due to random wandering of binding-site sequences, but to functional
changes in the TFs themselves. For example, Nakagawa et al. (2013) found that the
sequence specificities of members of the forkhead family of TFs have changed over
time in the eukaryotic tree, with some evolving bispecificity (i.e., using two different
motifs), and others subsequently losing the ancestral specificity.

One of the most thoroughly analyzed metazoan promoters is that for the Endo16
gene in the sea urchin Strongylocentrotus purpuratus, which is bound by seven dif-
ferent TFs and forms the heart of a complex developmental cascade (Yuh et al.
1998). The regulatory pathways associated with this gene were revealed through
several years of study using multiple individuals from a diverse natural population,
but this lack of genetic-background control likely influenced the generality of the
results. For example, it was subsequently determined that the TFBSs for Endo16
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and for other regulatory genes in S. purpuratus harbor as much (and in some cases
more) within-species sequence variation as surrounding, presumably nonfunctional
nucleotides (Balhoff and Wray 2005; Garfield et al. 2012). Moreover, although the
expression patterns of Endo16 appear to be conserved between different sea urchin
genera, there is virtually no similarity between the regulatory regions (Romano and
Wray 2003). Similar kinds of observations have been made on the regulatory regions
of developmental genes in different ascidian species (Oda-Ishii et al. 2005).

Additional examples of apparent stability of gene expression across species with
little apparent regulatory-region sequence continuity have been noted in the con-
generic nematodes C. elegans and C. briggsae (Barriére et al. 2011, 2012; Reece-
Hoyes et al. 2013). Likewise, multiple studies on developmental genes in Drosophila
indicate up to 5% turnover of TFBSs among closely related species (Moses et al.
2006; Crocker et al. 2008; Hare et al. 2008; He et al. 2011), again with conservation
of gene-expression patterns being maintained despite the underlying changes in the
regulatory regions (Ludwig et al. 2011; Paris et al. 2013).

What remains unclear is whether the observed regulatory-sequence changes in
these studies are accompanied by modifications in the DNA-binding domains of the
associated TFs. There are, however, clear examples of TF-associated changes in
vertebrates. For example, Yokoyama and Pollack (2012) found that a single amino-
acid change in the transcription factor SP1, which occurred independently in birds
and mammals, is associated with orchestrated TFBS-motif changes in hundreds of
genes in each lineage. Moreover, across the different orders of mammals, which
diverged ∼ 100 million years ago, at least a third of TFBSs appear not to be shared
(Dermitzakis and Clark 2002; Schmidt et al. 2010; Yokoyama et al. 2011). These
changes involve alterations in both the TFs utilized in gene expression and the
motifs that they bind to. Substantial changes in the TFs bound to the regulatory
regions of orthologous genes have even been observed in closely related mouse species
(Stefflova et al. 2013). Small changes in TF amino-acid sequence are also known to
be associated with changes in binding-site specificities in plants (Sayou et al. 2014).

As in the previous examples with invertebrates, the changes in vertebrate regula-
tory mechanisms again appear to often occur without noticeable affects on patterns
of gene expression. For example, Fisher et al. (2006) found that the control region
for the human RET receptor kinase gene drives expression within zebrafish even
though there is no obvious sequence similarity. Wilson et al. (2008) found that
when human chromosome 11 is put into mouse cells, the pattern of transcription
is very similar to that in human cells. However, in contrast to the situation for
messenger RNAs, neither species background is sufficient to drive expression of the
ribosomal RNA genes from the other, a phenomenon known as nucleolar dominance
(Arnheim 1986).

Taken together, the preceding observations suggest the common existence of
evolutionary pathways whereby the underlying mechanisms of gene regulation can
be altered with no apparent modification in the outward phenotype. Such regulatory
repatterning provides further evidence for evolution at the cellular level by effectively
neutral mechanisms, a topic that will be returned to in the final section of the
chapter.

We now move on to higher-order issues, in particular with the wide diversity
of topological structures of gene-regulation pathways, much of which is unexplained
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from an evolutionary perspective. There is much to be considered here, including
the numbers and types of steps in regulatory pathways, branching patterns, and
the degree to which both pathway topologies and the individual participants remain
constant over evolutionary time. Not surprisingly, considerable attention has been
given to the idea that regulatory pathways are optimally structured to yield partic-
ular performance levels, response times, and stability. However, these conclusions
are often reached from the starting assumption of an all-powerful hand of natural
selection. It will be argued below that, as with the coevolution of transcription
factors and their binding sites, numerous features of pathway-structure evolution
are seemingly guided by nonadaptive mechanisms.

Activators vs. suppressors. Before considering the higher-order architecture of
pathways, it is essential to note that although all of the preceding discussion has
been focused on gene activation by TFs, in their simplest form TFs can operate as
activators or repressors (Figure 21.8). In the former case, via signal transduction
(Chapter 22) the gene for the TF is activated, and the TF then activates the gene of
interest. This mechanism of double-positive (++) control ensures that the gene is
only active in the face of appropriate demand. However, the same end-result can be
obtained with double-negative (−−) control, whereby the transcription factor oper-
ates as a repressor of transcription until it is released upon receiving an appropriate
signal for gene-usage demand.

In a broad study of the regulation of E. coli genes, Savageau (1974, 1977, 1998)
found that genes whose products are needed most of the time tend to be subject to
++ regulation, whereas those that are only sporadically needed are generally under
−− regulation. To explain this pattern, he proposed a “use it or lose it” hypoth-
esis. The simple basis of this idea is that proteins not carrying out a function are
subject to the neutral accumulation of degenerative mutations during such periods
of activity. Under this view, an activator TF that is rarely used will be subject
to a high rate of pseudogenization, whereas a repressor TF used in this context
will only rarely be subject to deleterious-mutation accumulation. In contrast, for
a gene whose products are in high and frequent demand, a repressor TF would be
unutilized most of the time, and hence subject to degradation. Thus, under this
hypothesis, there is a selective premium on the mode of regulation that involves a
regulatory protein that is kept at the highest level of utilization. Supplementing
this mutation-load argument is the idea that bound transcription factors reduce the
likelihood of inadvertent transcription owing to nonspecific binding by other TFs,
which amounts to an error-minimization scenario (Shinar et al. 2006).

As pointed out by Gerland and Hwa (2009), the validity of these genetic load
arguments depends on the population-genetic environment and the timescale of en-
vironmental shifts. They argue that the “use it or lose it” principle is most likely
to hold if populations are sufficiently small that conditionally deleterious mutations
can drift to high frequency during periods of inactivity. At sufficiently large popu-
lation sizes, deleterious mutations may rarely have time to rise to high frequencies
between bouts of use/nonuse (from Chapter 4, the time to fix a neutral mutation is
approximately equal to twice the effective population size). Arguing that all delete-
rious mutations accumulating for an inactive TF gene will be immediately purged
from the population upon demand for the gene product, they invoke a “wear and
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tear” principle, whereby the least-used regulator can actually incur a slightly lower
long-term average mutation load. The issues are a bit subtle here, but the essential
point is that the fitness difference between alternative modes of regulation under
this model is less than the mutation rate. This actually makes it highly unlikely
that a domain in which the least-used mechanism will be most advantageous will
ever be entered, as the mutation rate is weaker than the power of random genetic
drift (Chapter 4). Thus, Savageau’s hypothesis appears to be quite robust, and is
well worth exploring in future studies with other organisms, especially given that it
draws support from observations on a high-Ne species, E. coli.

Regulatory rewiring. As outlined above, there are numerous examples in which
the regulatory motifs associated with specific traits vary among species. However,
this only touches the surface of the known ways in which regulatory mechanisms
change over evolutionary time. Given the large numbers of transcription factors in
most cells and their reliance on simple binding sites subject to stochastic mutational
turnover, there are many plausible mechanisms for the emergence of novel intracel-
lular transactions by effectively neutral processes (Johnson and Porter 2000; Force
et al. 2005; Haag and Molla 2005; Lynch 2007b).

Several well-dissected examples demonstrate the complete rewiring of TF/TFBS
associations, mostly in the yeast S. cerevisiae, where the study of gene regulation has
been especially intense. Such studies strongly support the counterintuitive idea that,
even when under strong selection to maintain a stable phenotype, complex regula-
tory systems are subject to substantial modifications in their underlying structure.

Drawing on earlier work by Tanay et al. (2005) and Hogues et al. (2008), Lavoie
et al. (2010) found massive differences in the regulatory machinery associated with
the ribosomal-protein genes in S. cerevisiae and another yeast Candida albicans.
Indeed, nearly every TF used in S. cerevisiae is utilized in a different way in the
latter species, and shifts in the consensus motifs for orthologous TFs occur as well.
Some of this rewiring appears to be associated with whole-genome duplication known
to have occurred in ancestral S. cerevisiae (Wolfe and Shields 1997). For example,
an activator and repressor that control ribosomal-protein expression in normal and
stress conditions in S. cerevisiae are actually subfunctionalized duplicates of an
ancestral gene inferred to have had both functions. Moreover, the various TFs
involved have associations with novel functions in one or both species, showing
expanded/contracted assignments.

Expanding on this theme, Martchenko et al. (2007) found that although S. cere-
visiae and C. albicans have similar patterns of expression for genes associated with
galactose metabolism, the underlying regulatory circuitry is completely different.
Based on phylogenetic analysis, the ancestral species appears to have had shared
(and perhaps redundant) regulatory motifs, with each of the two descendent lineages
then going on to divergently utilize just one. Interestingly, the regulatory TF in S.
cerevisiae (Gal4) is still retained and has similar binding properties in C. albicans,
but is used in other processes (Askew et al. 2009). Even the regulatory mechanisms
for the expression of histone proteins, one of the most evolutionary conserved sets
of proteins across eukaryotes, are dramatically altered across yeast species, both in
terms of the TFs deployed and their binding motifs (Mariño-Ramı́rez et al. 2006)

The regulatory wiring for the mating-type locus is also dramatically changed
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in yeast (Baker et al. 2011, 2012; Sorrells et al. 2015; Britton et al. 2020). Two
mating-type cells exist in these species, a and α (Chapter 10). In C. albicans and
other basal yeast lineages, a-specific genes are activated by a regulatory protein
only present in a cells, which keeps the a-specific genes off in α cells without any
investment in transcription factors. This mode of regulation in α cells diverged in
S. cerevisiae, where the a-specific genes remain constitutively active in a cells, as
in C. albicans, but are kept silent in α cells by a specific repressor protein (i.e.,
requiring an added investment in gene regulation in such cells). The alterations
responsible for these differences again appear to have arisen from an intermediate
ancestral state in which two sets of regulation were used simultaneously, and then
divergently resolved in descendent lineages.

Many additional examples of regulatory rewiring have been uncovered in com-
parative analyses of the gene modules of S. cerevisiae and C. albicans (Tuch et al.
2008; Sarda and Hannenhalli 2015; Nocedal et al. 2017), but these kinds of observa-
tions are by no means restricted to yeasts. For example, a number of studies have
suggested substantial regulatory rewiring among bacterial species (Babu et al. 2004;
Lozada-Chávez et al. 2006; Price et al. 2007), with the general conclusion being that
TFs are much less conserved than their target genes, although detailed examples of
closely related species are lacking (see Perez and Groisman 2009a,b).

A remarkable feature of all of the above examples of the evolution of differ-
ent control mechanisms is that they involve coordinated TFBS changes at multiple
target loci. How might multiple genes acquire the same sets of regulatory changes
without an intermediate state of massive fitness loss? The simplest routes appear
to require an intermediate phase of redundancy with respect to the TF (Force et
al. 2005; Tanay et al. 2005; Tuch et al. 2008) (Figure 21.9). If, for example, an an-
cestral TF exhibited bispecificity, i.e., was able to recognize two alternative TFBS
motifs, random genetic drift (possibly accompanied by alternative mutation pres-
sures) might result in the gradual loss of a different TFBS motif in each lineage.
Such a condition would lead to relaxed selection on bispecificity, with the TF then
being free to lose a complementary motif in each lineage. The net effect of such a
scenario would be the continued use of the same TF, but a change in the underlying
regulatory language.

An apparent example of such evolutionary divergence is provided by LEAFY, a
major regulator of flower development and cell division in land plants. Despite its
presence in just a single copy per genome, the recognition motif of this TF differs
substantially between mosses and the clade containing almost all other land plants.
However, hornworts, which are basal with respect to the rest of land plants, utilize
a third consensus motif while also harboring a capacity to promiscuously recognize
the two motifs relied upon by other land plants (Sayou et al. 2014). This reciprocal
focusing of a bispecific ancestral TF may be a common mechanism of regulatory
rewiring, at least in multicellular species, as roughly half of the TFs in mice and
land plants recognize secondary motifs (Badis et al. 2009; Jolma et al. 2013; Franco-
Zorrilla et al. 2014; Morgunova et al. 2018).

Divergence of TFBS motifs can also be achieved by an effectively neutral pro-
cess of subfunctionalization within a single genome, when an ancestral TF gene with
two regulatory motifs becomes duplicated, with the two copies then retaining just
single, complementary recognition motifs. In this case, the overall biology of the
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organism will again remain the same, although the regulatory network will have
become more complex, owing to the specialization of the individual TFs. Analy-
ses in the nematode C. elegans (Reece-Hoyes et al. 2013) and the budding yeast
S. cerevisiae (Pougach et al. 2014) provide considerable support for this model of
regulatory rewiring.

Finally, the TF used in one particular lineage might fortuitously recruit an
unrelated TF through a spurious protein-protein interaction. Although initially
neutral, this interaction might then encourage the gradual evolution of local binding
sites complementary to the second TF, at which point the first TF might become
superfluous and subject to loss by mutational degeneration. Under this scenario, a
coordinated shift in the entire regulatory mechanism might be achieved by multiple
loci, as the initiating event will have been experienced simultaneously by each of
the relevant regulatory regions owing to their shared reliance on the first TF.

These kinds of observations have profound implications for how we study biol-
ogy, the obvious concern being that the molecular details deciphered for the regula-
tory pathway in one model system need not be relevant to that operating in other
species. Yet, almost all molecular, cellular, and developmental biologists eschew
intraspecific variation, concentrating instead on typological characterizations of a
few model species. Indeed, it has become increasingly common for laboratories in
these fields to focus research on just a single strain of a single species, sometimes
for decades. The resultant exquisite, painstaking research has led to remarkable
advances in our understanding of the details of subcellular mechanisms, but what
is the generality of such findings?

Because virtually every complex trait in every species exhibits significant ge-
netic variation (Lynch and Walsh 1998), it is likely that many text-book examples
of regulatory pathways derived from single clones or inbred lines are quite unrepre-
sentative of the operational features of related phylogenetic lineages, and some may
be positively misleading. Notably, even in the relatively simple bacterium E. coli,
when a TF is duplicated and one copy is then engineered to have a nonorthologous
regulatory region, there are no notable changes in organismal fitness (Isalan et al.
2008), suggesting a high degree of evolutionary flexibility of regulatory systems.
Among those with interests in multicellular organisms, these kinds of observations
have motivated interest in the process of “developmental system drift,” whereby
seemingly similar morphological structures in closely related species are achieved
by substantially different regulatory mechanisms (Johnson and Porter 2000, 2001,
2007); Weiss and Fullerton 2000; True and Haag 2001; Ruvinsky and Ruvkun 2005;
Force et al. 2005; Haag and Molla 2005; Tsong et al. 2006; Lynch 2007b; Pavlicev
and Wagner 2012; Sommer 2012; Metzger and Wittkopp 2019).

Network topology. As with all other genes, TF expression is often regulated
by other TFs, whose control may ultimately be dictated by signal transduction
pathways induced by internal or external chemical signals (Chapter 22). Combined
with the fact that TFs can operate as either enhancers or repressors, this opens up
the possibility of multiple architectures for gene regulatory networks. For example,
the joint operation of just two genes can be governed by six different topologies
(Figure 21.10a). A common form of network called the feed-forward loop involves
just three genes (two TFs, with one regulating the second, and both regulating a
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third target gene), but even then still has eight possible topologies not including
self-regulatory loops, and expanding to 64 possibilities if the latter are included
(Figure 21.10b). Such loops are said to be coherent if the direct effect of the first
TF is the same as its indirect effect through the second TF; otherwise, the loop is
said to be incoherent.

Many regulatory pathways are much more baroque in form than those just noted
(Wilkins 2002, 2005; Lynch 2007b). For example, it is common for linear pathways to
consist of a series of genes whose products are essential to the activation/deactivation
of the next downstream member, with only the expression of the final component
in the series being the ultimate determinant of the phenotype. For example, the
product of gene D may be necessary to turn on gene C, whose product is necessary
to turn on gene B, whose product finally turns on gene A. Pathways involving only
inhibitory steps also exist, and these lead to an alternating series of high and low
expression, depending on the state of the first gene in the pathway. For example,
gene D may generate a product that inhibits the expression of gene C, whose silence
allows gene B to be turned on, which inhibits the expression of gene A. It is often
unclear that such complexity has any advantages over simpler two-gene pathways
or even self-regulation.

The mechanisms by which genetic networks become established evolutionarily
are far from clear. Many physicists, engineers, computer scientists, and cell and
developmental biologists are convinced that biological networks are endowed with
features that confer emergent properties’ that ostensibly could only be products
of natural selection (Gerhart and Kirschner 1997; Shen-Orr et al. 2002; Milo et
al. 2002; Barabási and Oltvai 2004; Alon 2006, 2007; Babu et al. 2006; Balaji
et al. 2006; Davidson 2006; Tagkopoulos et al. 2008; Burda et al. 2011; Hong et
al. 2018; Zitnik et al. 2019). Five popular concepts in biology today – redundancy,
robustness, modularity, complexity, and evolvability – invoke a vision of the cell as an
electronic circuit, designed by and for adaptation. However, the physical and genetic
mechanisms giving give rise to genome architectural features are logically distinct
from the adaptive processes utilizing such features as evolutionary resources (Lynch
2007b). Theoretical investigations of network evolution have only rarely examined
these matters in the context of well-established evolutionary principles.

Qualitative observations suggest that the complexity of regulatory networks
increases from prokaryotes to unicellular eukaryotes to multicellular eukaryotes, with
simple autoregulatory loops being more common and multi-component loops less
common in microbes (Thieffry et al. 1998; Lee et al. 2002; Wuchty and Almaas 2005;
Sellerio et al. 2009). However, it is an open question as to whether complex pathway
architectures are a necessary prerequisite for the evolution of complex phenotypes or
whether the genome architectures of multicellular species are simply more conducive
to the emergence of network connections owing to the elevated power of random
genetic drift. The possibility that network-topology evolution is driven by the kinds
of nonadaptive processes that generate changes in network participants (noted in
the preceding section) clearly merits consideration.

The following arguments illustrate the ease with which commonly observed fea-
tures of genetic pathways can emerge without any direct selection for such properties.
In principle, pathway augmentation may be driven entirely by the nonadaptive pro-
cesses of duplication, degeneration, and random genetic drift. Consider the series
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of events in Figure 21.11. Initially, a single gene A carries out some function in a
constitutive fashion, but in a series of steps, it becomes completely reliant on an
upstream activation factor B. A scenario like this could unfold in the following way.
First, gene A becomes sensitive to activation by gene B, either because gene A has
acquired a cis modification that causes activation by B, or because some transcrip-
tion factor B acquires a mutation that causes it to serve as a trans activator of A. At
this point, gene A has redundant activation pathways, and is therefore vulnerable to
loss of one of them. Should a degenerative mutation cause gene A to lose the ability
to self-regulate, gene B will have been established as an essential activator. This
process can be repeated anew as gene B acquires sensitivity to a further upstream
TF and loses the ability to constitutively express.

The probability of establishment of these types of changes is expected to depend
on the effective population size (Ne). This is because a redundantly regulated allele
has a weak mutational advantage equal to the rate of loss of a regulatory site (ul) –
one such mutation will result in the nonfunctionalization of either a self-regulated or
an upstream-dependent allele, but will leave the function of a redundantly regulated
allele unaltered. If Ne � 1/ul, such an advantage will be impervious to selection,
and the population will evolve to an allelic state that simply depends on the relative
rates of gain and loss of regulatory sites (ug and ul in Figure 20.10), eventually
leading to the establishment of an obligatory pathway. In contrast, if Ne � 1/ul, the
accumulation of upstream-dependent alleles will be inhibited by their weak muta-
tional burden, as well as by the additional energetic burden (imposed by the expense
of an additional pathway component). Although these arguments demonstrate that
small population size provides a permissive environment for the emergence of com-
plex genetic networks, without any direct selection for complexity, this does not
mean that such alterations cannot occur in very large populations. However, if such
changes are to occur in a large Ne context, they must have substantial enough addi-
tional advantages to offset the mutational and energetic burden of gene-structural
complexity.

As discussed in detail in previous chapters, these simple arguments show how
the relative power of the nonadaptive forces of evolution – genetic drift, mutation,
and recombination – define the trajectories open to evolutionary exploitation. Al-
though the incorporation of more technical details is needed, previous conclusions
on the adaptive basis for the evolution of network topologies that rely on models de-
void of population-genetic details should be interpreted with caution (Wagner 2005).
Failure to reject a neutral hypothesis is not equivalent to ruling out selection as a
governing force. However, the demonstration that the emergence of redundantly
regulated genetic pathways is a function of population size and patterns of muta-
tional bias raises doubts about the justification for the search for universal adaptive
explanations for the evolution of genetic redundancy and robustness. For similar
reasons, the conclusion that convergent evolution of network architectures in dis-
tantly related microbes provides compelling evidence for “optimal design” (Conant
and Wagner 2003) also appears to be questionable.

As a more explicit example of the issues, one of the most common pathways
in bacteria, the coherent feed-forward loop (Figure 21.11) is, in fact, not particu-
larly stable across phylogenetic lineages (Tsoy et al. 2012), and the case has been
made that the relative utilization of alternative topologies in bacteria may largely
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be a consequence of random patterns of mutational loss and gain of substitutable
links (Cordero and Hogeweg 2006; Lynch 2007b; Solé and Valverde 2008; Ruths and
Nakhleh 2013). Finally, the ultimate output of a regulatory pathway is dictated not
just by its topological form, but by the numerous dynamical properties (e.g., kinetic
coefficients) and abundances of its participants that can override any supposed ef-
fects of topological structure (Ingram et al. 2006), leading to still more degrees of
freedom for pathway rewiring. Although greatly simplified for presentational pur-
poses, the verbal arguments presented here provide the seeds for the development of
biologically realistic models for the origins of pathway complexity, which may prove
useful in future attempts to infer vs. reject the adaptive significance of such features.

Summary

• A defining feature of all gene expression in all organisms is the production of RNA
products from DNA templates, activated by various proteins called transcription
factors (TFs) and carried out by RNA polymerases.

• Low rates of transcript production combined with high rates of degradation
typically result in average steady-state mean numbers of transcripts per cell on
the order of 20 or fewer, and bursty transcription generally results in a high level
of noise in the number of transcripts per cell.

• As multiple proteins are commonly produced per mRNA and have elevated half-
lives relative to the latter, the number of proteins per expressed gene within a
cell typically vastly exceeds the number of mRNAs, and the noise level is reduced
accordingly.

• Transcription factors link to their binding sites (TFBSs) in ways that can be
described by a simple biophysical model, which demonstrates that little is gained
in terms of affinity for binding motifs longer than ∼ 12 nucleotides. The search
for target genes is facilitated by the diffusion of TFs over the DNA with peri-
odic jumps from one chromosomal location to another, and the search space in
eukaryotes is reduced further by confining the genome to the nucleus.

• Despite these facilitating features, the time for a TF to locate a specific TFBS can
be on the order of minutes to hours. Thus, a basic cost of the life’s mechanism
of gene expression is the necessity of producing substantially more copies of TFs
than numbers of genes served in order to ensure a high probability of TFBS
binding.

• Although the activation of gene expression by TFs must date to LUCA, there is a
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remarkable void of obvious TF orthologs between bacteria, archaea, and eukary-
otes. In contrast, within eukaryotes, many of the TFs known to be associated
with complex development in animals and land plants are also present in basal
unicellular lineages.

• Changes in gene expression evolve through gene-specific modifications of TFBS
motifs and/or shifts in the binding affinities and expression patterns of TFs.
Nonetheless, many cases are known in which TFBS motifs wander among phylo-
genetic lineages, while continuity in gene expression is maintained. Such variation
is particularly likely when a TF regulates only a few genes, as the TF and its
binding sites are relatively susceptible to a coevolutionary dance so long as their
mutual compatibility is maintained. In contrast, a TF with a large number of
client genes can become frozen in time, as a slight improvement in the binding
affinity to one gene may disrupt that for many others.

• TF-systems provide the substrate for the development of a mechanistic evolution-
ary model directly linking genotype (number of nucleotides in a TFBS matching
the optimal TF motif) to phenotype (expression level of the client gene) to fit-
ness. This model predicts the existence of substantial variation of binding-site
matching under a wide variety of conditions, especially when population sizes are
relatively small.

• Transcription factors can operate as either activators or repressors of expression
of client genes. Consistent with a “use it or lose it” hypothesis, the mode of
regulation exploited by individual genes is generally the one that keeps the TF
at the highest level of utilization, e.g., activation when the client gene is used
frequently, and repression when client-gene demands are low.

• A common feature of regulatory-pathway evolution is stasis of performance in the
face of substantial regulatory rewiring in different phylogenetic lineages, in some
cases to the point of using entirely different TFs to carry out the same tasks.
Such cases of regulatory-system drift provide compelling examples of effectively
neutral evolution at the subcellular level.

• A multitude of regulatory-pathway topologies exists among genes and organisms,
with those in multicellular species being particularly elongated in structure, sug-
gesting a syndrome of overdesign. In addition, the most common topologies in
bacteria are often explainable with models invoking random gains and losses of
links. Both kinds of observations raise questions about the common assertion
that regulatory pathways are optimally designed to minimize expression noise
and to maximize robustness and the capacity for future evolvability.
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Foundations 21.1. Numbers of transcripts per cell. The rate of protein produc-
tion depends on the number of mRNA molecules per cell, which in turn is a function
of the rate of production of new transcripts and their subsequent loss by degradative
processes. We first consider the situation for a constitutively expressed gene, with a
constant rate of production of new transcripts km, with a rate of decay per transcript
δm. With constant rates, regardless of the starting conditions, the stochastic proba-
bility distribution of the number of mRNA molecules per cell, p(nm), will eventually
reach a steady state. At this point, the flux rate between the nm = 0 and nm = 1
states must be equal in both directions,

kmp(0) = δmp(1), (21.1.1a)

so
p(1) = p(0)(km/δm). (21.1.1b)

Similarly, the flux rates in and out of class nm = 1 must be equal, so

(km + δm)p(1) = kmp(0) + 2δmp(2). (21.1.2a)

After subtracting Equation 21.1.1a and rearranging,

p(2) = p(0)(km/δm)2/2. (21.1.2b)

This approach generalizes to

p(nm) = p(0)(km/δm)nm/nm!, (21.1.3)

where nm! = nm(nm − 1)(nm − 2) · · · 1 is the factorial function.

To complete the solution, we require an expression for p(0). Because the sum of
the entire probability distribution, p(nm), is constrained to equal 1.0, it follows that
p(0) must equal a constant that ensures such equality. Noting that an exponential
function can be written as the series expansion,

ex =

∞∑
nm=0

xnm

nm!
, (21.1.4a)

which rearranges to

1 = e−x
∞∑

nm=0

xnm

nm!
, (21.1.4b)

inspection of Equation 21.1.3, and substituting x = km/δm, implies

p(0) = e−km/δm , (21.1.5a)

and more generally,
p(nm) = (km/δm)nme−km/δm/nm!. (21.1.5b)

This is the well-known Poisson distribution, which is a function of a single parameter
(in this case km/δm), which in turn is equal to both the mean and the variance. Thus,
under a model of constitutive gene expression, the mean number of transcripts per cell
is simply equal to the ratio of the rates of production and elimination, km/δm.

Under more complex scenarios of gene regulation, the distribution of the number
of transcripts per cell deviates from the Poisson, and needs to be evaluated by more
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complex methods (Thattai and van Oudenaarden 2001; Phillips et al. 2012). A solution
for the two-state model in which the gene is turned on with some probability Pon was
derived by Peccoud and Ycart (1995) and has the respective mean and variance

µm =
Ponkm

δm
(21.1.6a)

σ2
m = µm

(
1 +

(1− Pon)km

kon + koff + δm

)
, (21.1.6b)

where kon and koff are, respectively, the rates of transition of cells from the off to on
states, and vice versa. The complete distribution, worked out by Raj et al. (2006) and
Shahrezaei and Swain (2008), is given by

p(nm) = p∗(nm)· δ(k
′
on + nm)δ(k′on + k′off)

δ(k′on + k′off + nm)δ(k′on)
·1F1[k′off, (k

′
on+k′off+nm); km/δm], (21.1.7)

where p∗(nm) is the Poisson distribution defined in Equation 21.1.5b, k′on = kon/δm,
and k′off = koff/δm. Here, δ(· · ·) is the gamma function, and 1F1[· · ·] is the confluent
hypergeometric function of the first kind, both of which can be approximated using
expressions in Abramowitz and Stegun (1972).

Although this model is agnostic with respect to the mechanisms turning a gene
on and off, it does assume that the switching events are completely random (i.e., have
probabilities that do not depend on the length of stay in a previous state). Under this
assumption,

Pon =
kon

kon + koff
. (21.1.8)

Alternative models that allow for the on/off rates being dependent of the state of the
DNA, and/or influenced by the presence of cooperative factors, chromatin remodeling,
etc., can be found in Phillips et al. (2012), Hammar et al. (2014), Corrigan et al. 2016,
Sevier al. (2016), and Skinner et al. (2016).

In Foundations 21.2, a more mechanistic description of Pon is provided in terms
of transcription-factor binding. The central point here is that, owing to the population
of cells being heterogeneous with respect to the on and off states, there is a greater
dispersion in mRNA number per cell when Pon < 1 relative to the case of constitutive
gene expression (as can be seen from the degree to which the variance of nm exceeds
the mean).

Foundations 21.2. Occupancy probability for a transcription-factor binding
site. Because gene activation requires that relevant TFBSs be occupied by their cog-
nate TFs, an understanding of the mechanics of gene expression requires some basic
theory for the probability that a particular TFBS is appropriately bound. This, in
turn, requires information on the degree to which individual TF molecules are tran-
siently tied to alternative substrates within the cell. Here we consider one particular
target TFBS within a genome containing Not additional off-target but legitimate bind-
ing sites for the TF of interest, e.g., belonging to other client genes. In addition, we
must account for the possibility of erroneous binding to illegitimate sites in the genome.
Although such nonspecific binding is expected to be weak on a per-site basis, because
each nucleotide site can serve as an initiation site for binding, the number of such sites
is enormous, being close to the total number of bases in the genome (G).

Letting Ntf be the number of cognate TF molecules in the cell, we assume that
Not � Ntf � G. The first inequality follows from the fact that a full repertoire of
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gene expression is extremely unlikely unless the number of TF molecules substantially
exceeds the number of genes requiring their services. The second inequality follows
from the sheer magnitude of genome sizes (generally, 106 to 1010 bp).

To compute the probability that a particular TFBS is bound by a cognate TF,
we utilize a standard approach from statistical mechanics, evaluating the relative like-
lihoods of all possible ways in which Ntf TF molecules can be distributed within a
cell (Bintu et al. 2005; Phillips et al. 2012). Here, we assume that essentially all such
molecules are situated along the chromosome, either specifically bound to true cognate
sites or nonspecifically bound to random genomic regions, although this assumption
need not literally be true so long as all off-site sequestration is appropriately accounted
for. Ultimately, we require a measure scaling with the total probability that a TF is
bound to the site of interest, Zon, and another measure scaling with the probabil-
ity that all Ntf TF molecules are engaged elsewhere on the genome, Zoff. The sum,
(Zon + Zoff), is known as the partition function, and it follows that the probability of
a particular TFBS being occupied is simply

Pon =
Zon

Zon + Zoff
=

1

1 + (Zoff/Zon)
. (21.2.1)

The first step to evaluating the two components of the partition function is to
enumerate the full set of relevant configurations of the Ntf molecules within the cell,
weighting each set of states by its multiplicity, i.e., the number of ways in which a
particular type of configuration can be distributed over the genome. Consider, for
example the situation in which the target TFBS is unoccupied. In this case, all Ntf

TF molecules might be nonspecifically bound, with none on off-target sites; here, there
are G!/[(G−Ntf)!Ntf!] distinct ways in which the TFs can be distributed over the G
nonspecific sites (where x! = x(x−1)(x−2) · · · 1 is the factorial product). Alternatively,
Ntf − 1 TF molecules might be nonspecifically bound, with one on an off-target site;
there would then be G!/[(G−Ntf − 1)!(Ntf − 1)!] distinct ways in which the TFs can
be distributed over nonspecific sites, and Not possible locations for the one off-target
TFBS, yielding a total multiplicity of NotG!/[(G − Ntf − 1)!(Ntf − 1)!]. This general
enumeration strategy must be extended to the opposite extreme in which all off-target
sites are occupied, in each case following the general procedure for determining the
distinct number of ways in which x TFs can be distributed over y sites. The same
strategy for quantifying multiplicity of configurations applies to the situation in which
the target TFBS is occupied, except in this case only (Ntf − 1) TF molecules are
distributed elsewhere.

Each of these multiplicities represents the potential for a particular configura-
tion of TF locations within a cell. However, after such enumeration, all of the al-
ternative states must be further weighted by their physical likelihoods dictated by
the overall binding energy of each configuration. Here, we denote the binding ener-
gies of the TF to the target, off-target, and nonspecific sites as Et, Eot, and Ens,
respectively. For example, for each configuration in which all TFs reside on nonspe-
cific binding sites, the total weight is e−NtfEns/(KBT ). If one off-target site is occupied
along with (Ntf − 1) nonspecific sites, the weight becomes e−[Eot+(Ntf−1)Ens)]/(KBT ) =
e−[(Eot−Ens)+NtfEns]/(KBT ). If the target site is occupied, along with one off-target
site and (Ntf − 2) nonspecific sites, the weight becomes e−[Et+Eot+(Ntf−2)Ens]/(KBT ) =
e−[(Et−Ens)+(Eot−Ens)+NtfEns]/(KBT ), etc. In these expressions, KBT is the Boltzmann
constant times the temperature (in degrees Kelvin), the standard measure of back-
ground thermal energy (Chapter 7). With both KBT and the binding energies mea-
sured in the same units (usually kcal/mol), the weights are dimensionless. Because
the binding energies are negative, with stronger binding denoted by more negative E,
the weights increase with the magnitude of binding strength to cognate sites relative
to background expectations.

With this substantial amount of bookkeeping in place, we are now in a position
to write down full expressions for each of the two components of the partition function.
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In each case, this is done by summing over all possible configurations the products of
the multiplicity and the energetic weight of each configuration. In the following, we use
the abbreviation β = 1/(KBT ), and let ∆Et = Et−Ens and ∆Eot = Eot−Ens denote
the differences in binding energies of target and off-target sites from background levels.
Summing up, some rather complex looking expressions arise,

Zoff '
G!Not!e

−βNtfEns

(G−Ntf)!(Ntf −Not)!N
Not

tf

Not∑
i=0

e−iβNtf∆Eot

(Not − i)!i!(G/Ntf)i
(21.2.2a)

Zon '
G!Not!e

−βNtfEnse−β∆Et

(G−Ntf + 1)!(Ntf −Not − 1)!NNot

tf

Not∑
i=0

e−iβNtf∆Eot

(Not − i)!i!(G/Ntf)i
(21.2.2b)

Noting, however, that the summations to the right of Equations 21.2.2a,b are identical,
and that several of the components on the left are identical or very similar as well,
substitution into Equation 21.2.1 leads to great simplification,

Pon =
1

1 + [G/(Ntf −Not)]eβ∆Et
. (21.2.3)

In a succinct fashion, this expression reveals how the magnitude of gene expres-
sion is dictated by basic cellular features. First, the probability that a TFBS is occu-
pied depends on the absolute difference in binding strengths between the target and
nonspecific sites; as Et becomes more negative (implying stronger binding), Pon → 1.
Second, the probability of binding at the site declines with increasing concentration of
nonspecific sites (G) relative to the number of transcription factor molecules available
to the site, (Ntf −Not). The first effect is a function of the degree of match between
the binding motif of the site of interest and the optimal sequence of its cognate TF,
whereas the second effect is determined by the size of the genome (G), the degree of
expression of the TF (the number of molecules in the cell, Ntf), and the number of
additional legitimate sites serviced by the TF (Not).

Foundations 21.3. TFBS localization. Gene regulation requires that TFs navigate
from their point of production by ribosomes to the genomic location of their cognate
TFBSs. Such encounters are established through semi-random diffusive molecular mo-
tions, i.e., without the involvement of any directed guidance from specific transport
mechanisms such as motor proteins. Here we consider the approximate time scale on
which encounters are likely to occur, primarily to show that the rapid equilibration
assumed in the previous section is indeed likely. We start with a focus on prokaryotic
cells, which offer the relative simplicity of a fairly homogeneous cytoplasm. The bio-
physical principles underlying the formulae to be used have been described in Chapter
7.

Transcription factors have an inherent tendency to bind nonspecifically to DNA.
Thus, because the translation of prokaryotic mRNAs is performed in the close vicinity
of the chromosome, often co-transcriptionally, it is reasonable to assume that a newly
arisen TF is almost immediately bound weakly to a nonspecific genomic site. This
raises the possibility that a TF could then simply engage in a one-dimensional diffusion
process over the chromosome until randomly encountering its cognate TF. The time
required for such an encounter can be roughly estimated by noting that after t time
units the average distance of a particle from its starting point in a one-dimensional
diffusion process (and ignoring any boundary conditions) is

d =
√

2D1t, (21.3.1)
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with D1 being the one-dimensional diffusion coefficient (with units equal the squared
distance per time).

A central problem with linear diffusion is its redundancy – with random move-
ment to the right and left, any diffusive event has a 50% probability of returning
the molecule to its location in the preceding step. The average location of a molecule
always remains at its starting position, with the probability distribution simply broad-
ening, equally to the left and right with time. Because in the absence of any directional
bias to movement, the particle will always reside to the left and right of the starting
point with equal probabilities, the quantity d is generally referred to as the root mean
square distance.

Assuming that a TF initially resides at a random location on the genome with
respect to its target TFBS, how long would it take to locate a specific target site by
one-dimensional diffusion? With the initial random TF position being being half a
genome away from the site (with G being the genome size in bp), and the TFBS being
potentially on either strand, the TF will have to interrogate an average total of ∼ G
potential sites to find a specific target. Thus, we require the time solution to Equation
21.3.1 that yields d = G. Several studies suggest an average D1 ' 0.5×106 bp2/sec for
a protein moving along the DNA in an E. coli cell (Wang et al. 2006; Elf et al. 2007;
Marklund et al. 2013). Noting that the E. coli genome is G ' 5 × 106 bp in length,
substituting D1 into Equation 21.3.1 and rearranging, we find that the average time
for a single TF molecule to encounter a specific TFBS by one-dimensional diffusion is
∼ 2.5× 106 sec (or ∼ 29 days). With Ntf TF molecules searching simultaneously, the
average search time would be 1/Ntf times the single-molecule expectation, but even
with 1000 TF molecules per cell (higher than what is seen in this species), the average
search time would be ∼ 0.7 hours. As this is too long to account for the fact that
E. coli cells are capable of dividing in < 0.5 hours, it is clear that linear scanning
cannot account for known rates of transcription. (This search space could be reduced
substantially for a target gene that is contiguous to the location of the TF gene).

An alternative way in which the search process might be accomplished is a form
of three-dimensional diffusion. In this case, we make use of an expression for the
encounter rate per unit concentration,

ke = 4π(D3n +D3p)(rn + rp), (21.3.2)

where D3n and D3p are, respectively, the diffusion coefficients for the nucleic acid
(TFBS) and the protein (TF), and rn and rp are their effective radii (Foundations
18.2). This equation assumes that an effective encounter occurs when the centers of
the TF and TFBS fall within total distance rn + rp of each other. Because of its bulk,
it is reasonable to assume that the DNA molecule is effectively immobile relative to
the TF, so that D3n ' 0. Experimental estimates for proteins in E. coli suggest that
D3p ' 3.5 µm2/sec (Elowitz et al. 1999; Elf et al. 2007). Taking an average TFBS
motif in this species to be 20 bp in length, and noting that the length of a nucleotide on
a DNA molecule is ' 0.34× 10−3 µm, the effective radius of a potential binding site is
approximately rn = 0.5×20×0.34×10−3 = 0.0034µm. The effective radii of proteins
of the size of a TF are roughly in the range of rp = 0.002 to 0.010µm (Wasyl et al.
1971; Erickson et al. 2009), and we will use an average of 0.006µm. Substitution of
these estimates into Equation 21.3.2 yields an estimated encounter rate of 0.4µm3/sec
per unit concentration.

To obtain an estimate of the actual encounter rate, this specific rate must be
multiplied by the products of the concentrations of the TFBS and TF within the cell,
and we must also compute the number of times the TF must jump from the DNA to
a new location prior to encountering its proper target. The volume of an E. coli cell
is ' 1µm3, and so with one TF molecule in search of ∼ 107 nonspecific binding sites
(summed over both sides of the genome), the rate of encounter with any site on the
DNA is 4 × 106/sec. The average time for a jump between chromosomal locations is
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the reciprocal of this quantity, 2.5 × 10−7 sec. Elf et al. (2007) estimate that once
on the DNA a TF spends ∼ 0.0026 sec diffusing over ∼ 100 bp, so essentially all of
the search time is spent directly interrogating the DNA, rather than jumping from
spot to spot. Thus, because approximately 105 100-bp scans are required to cover the
entire genome, the estimated time to locate a site is 105× 0.0026 = 260 sec. With Ntf

molecules in the cell, the search time would be reduced to 260/Ntf. A few prokaryotic
species have cell volumes as small as 0.1µm3, which would reduce the search time
further by a factor of ten, and few have volumes exceeding 100µm3, which would
increase the time 100-fold.

How might these results translate to transcription in eukaryotes? First, because
eukaryotic TFBSs are about half the length of those of prokaryotes, the encounter rate
will be reduced by a factor of 0.5 on the basis of target size. Second, the average rate
of diffusion in the nucleoplasm of mammalian cells is on the order of D3p ' 18µm2/sec
for proteins (Kühn et al. 2011), which will speed things up by a factor of 18/4 = 4.5.
Third, nuclear volumes in eukaryotic cells are typically larger than the volumes of entire
prokaryotic cells, generally in the range of 100 to 104 µm3 (Chapter 15). However, the
concentration of DNA within nuclei appears to be higher than that within prokaryotic
cells – averaging 57×106 bp/µm3 in root-tip cells of land plants (Fujimoto et al. 2005),
and 189× 106 bp/µm3 in the blood cells of amphibians (Cavalier-Smith 1982), which
is ∼ 25× the concentration in an E. coli cell. Taken together, these results suggest
that, once within the nucleus, a TF will encounter DNA at a rate on the order of
0.5×4.5×25 = 56 times faster than the rate calculated above for E. coli. Estimates for
the one-dimensional diffusion parameters do not appear to be available for eukaryotes.
However, assuming that they are roughly the same as in E. coli, because eukaryotic
haploid genome sizes are generally in the range of 10 to 3000 million bp in length, we
can anticipate search times on the order of 2 to 600× greater than that for E. coli. On
the other hand, a substantial fraction of eukaryotic chromosomes are spooled around
histones, which will serve to reduce the time needed to search for an exposed TFBS.

Although fairly crude, these estimates clearly indicate that given the architecture
of cells, specific motor proteins are not required to guide TFs to their final destinations.
All of the above calculations ignore the electrostatic interactions between proteins and
nucleic acids, which by increasing the effective radii of interacting particles, would
further speed up the localization process (Riggs et al. 1970; Halford 2009). Moreover,
initial encounters are expected to be considerably sped up in prokaryotes where the
TF is often encoded in a genomic location close to its target genes, ensuring that a
newly translated TF has a starting point close to its final destination (Kolesov et al.
2007).

The preceding calculations for eukaryotes ignore the additional problem of a cy-
toplasmically translated TF finding its way to the nucleus. An estimate of this time
can be obtained by referring back to Equation 21.3.2, which defines the expected en-
counter rate between two diffusing particles. Recalling the range of nuclear volumes
cited above and assuming a spherical shape, the radii of nuclei commonly fall in the
range of rn = 3 to 13 µm (for nuclear volumes in the range of 100 to 104 µm3, respec-
tively). As this is far larger than the size of proteins, rp, the latter can be ignored.
From the standpoint of diffusion, it can be assumed that the position of the nucleus
is relatively fixed, which implies D3n ' 0, and we again let D3p ' 18µm2/sec. It
then follows that the encounter rate falls in the approximate range of ke = 680 to
2950µm2/sec. The concentration of a single particle is the reciprocal of the cell vol-
ume, and the reciprocal of the product of this and ke provides an estimate of the mean
encounter time. Eukaryotic cell volumes are on the order of 100 to 106 µm3 (Chapter
8), and if we assume that the latter are ∼ 100× the nuclear volume, we obtain time
search estimates in the range of 2.5 to 5.5 mins for a TF molecule randomly placed
in the cytoplasm. These analyses ignore the additional time to locate and transport
through a nuclear pore. Thus, adding in the search time within the nucleus, the total
time for an individual eukaryotic TF to locate a specific TFBS is expected to be on
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the order of 10 minutes to several hours.

Foundations 21.4. The evolutionary dispersion of TFBS matching pro-
files. For any TF, given its specific binding domain, there will also be a specific
TFBS sequence on the DNA that maximizes the strength of binding. However, owing
to the recurrent introduction of mutations, variation will inevitably arise among the
TFBS sequences harbored by different genes. Selection will prevent extreme TFBS
degeneration, but there is little to be gained above a high level of binding strength
(Foundations 21.3). Thus, we can expect the levels of TF-TFBS matching to wander
within the boundaries dictated by these extremes. Such variation will be manifest
among the TFBS sequences associated with different genes within species as well as
among orthologous genes across species. Here, we outline a simple model to predict
the evolutionary dispersion of such sequences as a function of mutation pressure and
the efficiency of selection.

We start with the assumptions that all binding sites with the same number
of matches (m) are equivalent with respect to binding probability, regardless of the
position of the mismatches. In addition, for simplicity we assume that each of the
four nucleotides mutates to each of the three other states at the same rate µ. Under
these conditions, with a TF recognition motif of length ` nucleotides, there are `
genotypic classes to consider, each consisting of multiple subclasses with equal expected
probabilities under selection-mutation equilibrium. For example, class m = ` − 1
consists of 3` types, as the single mismatch can reside in sites 1 to ` and there are
three mismatching nucleotide types per site. More generally, the multiplicity within
each class can be determined simply from the binomial coefficient 3n`!/[(` −m)!m!].
This reduces a complex problem involving many classes to a more manageable level.

We will further assume a population that usually resides in a near pure state, with
a short enough time scale assumed that stochastic changes involve one-step transitions
to adjacent states (Figure 21.12). Denoting the probability that a TFBS resides in class
m at time t as P (m, t), where m denotes the number of matches, the time-dependent
behavior of the system is described by

∂P (m, t)

t
= Nµ · {(3(m+ 1)φm+1,mP (m+ 1, t)− [(`−m)φm,m+1 + (3mφm,m−1]P (m, t)

+(`−m+ 1)φm−1,mP (m− 1, t)} . (21.4.1)

The front term Nµ denotes the rate of influx of new mutations, whereas all remaining
terms denote the probabilities of fixation of various changes conditional on origin by
mutation. The first term is dropped when m = `, and the last is dropped when m = 0.
Here we assume a haploid population of N individuals (for a diploid population, 2N
should be substituted for N throughout).

This dynamical equation consists of three terms, the first denoting the influx
of probability from the next higher class, with (m + 1) functional sites mutating to
non-matching states at rate 3µ in each gene copy (the 3 accounting for mutation to
three alternative nucleotide types), and going on to become fixed in the population
with probability φm+1,m. The second term accounts for the efflux from class m to the
next upper and lower classes (m + 1 and m − 1), again accounting for the number
of possible mutations that cause such movement and their probabilities of fixation.
The final term describes the influx from the next lower class, which has ` − m + 1
mismatches, each back-mutating to a matching state at rate µ.

The fixation probabilities are provided by Kimura’s (1962) diffusion equation for
newly arisen mutations,

φx,y =
1− e−2Nesx,y/N

1− e−2Nesx,y
(21.4.2)
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where Ne is the effective population size, 1/N is the initial frequency of a mutation
(for a haploid population), and sx,y is the fractional selective advantage of allelic class
y over x (Chapter 4).

Despite its apparent complexity, Equation 21.4.1 can be solved in a relatively
transparent way, which we clarify by starting with the assumption of neutrality, i.e.,
sx,y = 0 for all (x, y). In this case, φx,x+1 = φx,x−1 = 1/N for all x, and N cancels out
in Equation 21.4.1. The entire array of TFBS states can be represented as a diagram
with connecting arrows denoting the flux rates between adjacent classes (Figure 21.11).
Because the rate of flux to matches declines and the rate of flux to mismatches increases
as m decreases, such a system must eventually reach an equilibrium, at which point
for each class the net flux from above equals that from below. This condition is known
as detailed balance.

For example, denoting the equilibrium solutions with a tilde, detailed balance

requires that 3`µP̃ (`) = µP̃ (`− 1), i.e., the flux from class ` to (`− 1) matches must
equal the reciprocal flux. This tells us that the probability mass in class (`− 1) is 3`

times that in the perfectly matching class `, i.e., P̃ (`− 1)/P̃ (`) = 3`. More generally,
for a linear model of this nature, the full solution for each class can be obtained by
simply multiplying all of the coefficients on the arrows pointing up to the class with
the product of all of the coefficients pointing down (Lynch 2013). For the case of
neutrality, this greatly simplifies to

P̃ (m) = C3`−m
(
`

m

)
, (21.4.3)

where C = 1/
∑`
i=0 3i

(
`
i

)
is a normalization constant that ensures a total probability

mass of 1.0. There are two notable features of this solution. First, the equilibrium prob-
abilities are completely independent of the mutation rate. Second, the term 3`−m

(
`
m

)
is equivalent to the number of unique ways in which a sequence of length ` can harbor
m matches.

Extending this approach to include selection is conceptually straight-forward.
The coefficient on each arrow in Figure 21.11 simply needs to be multiplied by the
fixation probability between adjacent classes. For example, for the arrows connecting
classes ` and (`− 1), the coefficients become 3`µφ`,`−1 and µφ`−1,`. The equilibrium
probabilities are then again obtained using the rule noted above – multiplying together
all of the coefficients leading up to and down to each class. Here, two useful results
lead to great simplification: 1) φm−1,m/φm,m−1 = e2Nesm−1,m ; and 2) sm−1,m =
Wm−Wm−1, where Wm is the fitness of alleles with m matches in their TFBS. Using
these equalities, Equation 21.4.3 generalizes to

P̃ (m) = C3`−m
(
`

m

)
e2NeW (m), (21.4.4)

where C is again a normalization constant (equal to the reciprocal of the sum of
the terms to the right of C for all m). Equation 21.4.4 shows that with selection
the equilibrium probability distribution of alternative binding states is equivalent to a
simple modification of the neutral expectation, with each neutral genotypic probability
being weighted exponentially by the product of its fitness and the effective population
size (which influences the efficiency of selection). Further elaborations of this model
can be found in Lynch and Hagner (2015) and Tuǧrul et al. (2015).
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Nourmohammad, A., and M. Lässig. 2011. Formation of regulatory modules by local sequence

duplication. PLoS Comput. Biol. 7: e1002167.

Nutiu, R., R. C. Friedman, S. Luo, I. Khrebtukova, D. Silva, R. Li, L. Zhang, G. P. Schroth,

and C. B. Burge. 2011. Direct measurement of DNA affinity landscapes on a high-throughput

sequencing instrument. Nat. Biotechnol. 29: 659-664.

Oda, M., K. Furukawa, K. Ogata, A. Sarai, and H. Nakamura. 1998. Thermodynamics of specific

and nonspecific DNA binding by the c-Myb DNA-binding domain. J. Mol. Biol. 276: 571-590.

Oda-Ishii, I., V. Bertrand, I. Matsuo, P. Lemaire, and H. Saiga. 2005. Making very similar embryos

with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians

Halocynthia roretzi and Ciona intestinalis. Development 132: 1663-1674.

Omagari, K., H. Yoshimura, M. Takano, D. Hao, M. Ohmori, A. Sarai, and A. Suyama. 2004.

Systematic single base-pair substitution analysis of DNA binding by the cAMP receptor protein

in cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 563: 55-58.

Paris, M., T. Kaplan, X. Y. Li, J. E. Villalta, S. E. Lott, and M. B. Eisen. 2013. Extensive

divergence of transcription factor binding in Drosophila embryos with highly conserved gene

expression. PLoS Genet. 9: e1003748.

Pavlicev, M., and G. P. Wagner. 2012. A model of developmental evolution: selection, pleiotropy

and compensation. Trends Ecol. Evol. 27: 316-322.

Peccoud, J., and B. Ycart. 1995. Markovian modeling of gene-product synthesis. 48: 222-234.



44 CHAPTER 21

Perez, J. C., and E. A. Groisman. 2009a. Evolution of transcriptional regulatory circuits in bacteria.

Cell 138: 233-244.

Perez, J. C., and E. A. Groisman. 2009b. Transcription factor function and promoter architecture

govern the evolution of bacterial regulons. Proc. Natl. Acad. Sci. USA 106: 4319-4324.

Phillips, R., J. Kondev, J. Theriot, and H. Garcia. 2012. Physical Biology of the Cell, 2nd Ed.

Garland Science, New York, NY.

Pougach, K., A. Voet, F. A. Kondrashov, K. Voordeckers, J. F. Christiaens, B. Baying, V. Benes,

R. Sakai, J. Aerts, B. Zhu, et al. 2014. Duplication of a promiscuous transcription factor drives

the emergence of a new regulatory network. Nat. Commun. 5: 4868.

Price, H. J., A. H. Sparrow, and A. F. Nauman. 1973. Correlations between nuclear volume, cell

volume and DNA content in meristematic cells of herbaceous angiosperms. Experientia 29:

1028-1029.

Price, M. N., P. S. Dehal, and A. P. Arkin. 2007. Orthologous transcription factors in bacteria

have different functions and regulate different genes. PLoS Comput. Biol. 3: 1739-1750.

Proshkin, S., A. R. Rahmouni, A. Mironov, and E. Nudler. 2010. Cooperation between translating

ribosomes and RNA polymerase in transcription elongation. Science 328: 504-508.

Raj, A., C. S. Peskin, D. Tranchina, and D. Y. Vargas, and S. Tyagi. 2006. Stochastic mRNA

synthesis in mammalian cells. PLoS Biol. 4: e309.

Rajewsky, N., N. D. Socci, M. Zapotocky, and E. D. Siggia. 2002. The evolution of DNA regulatory

regions for proteo-gamma bacteria by interspecies comparisons. Genome Res. 12: 298-308.

Reece-Hoyes, J. S., C. Pons, A. Diallo, A. Mori, S. Shrestha, S. Kadreppa, J. Nelson, S. Diprima,

A. Dricot, B. R. Lajoie, et al. 2013. Extensive rewiring and complex evolutionary dynamics in

a C. elegans multiparameter transcription factor network. Mol. Cell 51: 116-127.

Richter, D. J., P. Fozouni, M. B. Eisen, and N. King. 2018. Gene family innovation, conservation

and loss on the animal stem lineage. eLife 7: e34226.

Riechmann, J. L., J. Heard, G. Martin, L. Reuber, C. Jiang, J. Keddie, L. Adam, O. Pineda,

O. J. Ratcliffe, R. R. Samaha, et al. 2000. Arabidopsis transcription factors: genome-wide

comparative analysis among eukaryotes. Science 290: 2105-2110.

Riggs, A. D., S. Bourgeois, and M. Cohn. 1970. The lac repressor-operator interaction. 3. Kinetic

studies. J. Mol. Biol. 53: 401-417.

Robison, K., A. M. McGuire, and G. M. Church. 1998. A comprehensive library of DNA-binding

site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J. Mol.

Biol. 284: 241-254.

Romano, L. A., and G. A. Wray. 2003. Conservation of Endo16 expression in sea urchins despite

evolutionary divergence in both cis and trans-acting components of transcriptional regulation.

Development 130: 4187-4199.

Ruths, T., and L. Nakhleh. 2013. Neutral forces acting on intragenomic variability shape the

Escherichia coli regulatory network topology. Proc. Natl. Acad. Sci. USA 110: 7754-7759.

Ruvinsky, I., and G. Ruvkun. 2003. Functional tests of enhancer conservation between distantly

related species. Development 130: 5133-5142.



TRANSCRIPTION 45

Sanchez, A., and I. Golding. 2013. Genetic determinants and cellular constraints in noisy gene

expression. Science 342: 1188-1193.

Sarai, A., and Y. Takeda. 1989. Lambda repressor recognizes the approximately 2-fold symmetric

half-operator sequences asymmetrically. Proc. Natl. Acad. Sci. USA 86: 6513-6517.

Sarda, S., and S. Hannenhalli. 2015. High-throughput identification of cis-regulatory rewiring

events in yeast. Mol. Biol. Evol. 32: 3047-3063.

Savageau, M. A. 1974. Genetic regulatory mechanisms and the ecological niche of Escherichia coli.

Proc. Natl. Acad. Sci. USA 71: 2453-2455.

Savageau, M. A. 1977. Design of molecular control mechanisms and the demand for gene expression.

Proc. Natl. Acad. Sci. USA 74: 5647-5651.

Savageau, M. A. 1998. Demand theory of gene regulation. I. Quantitative development of the

theory. Genetics 149: 1665-1676.

Sayou, C., M. Monniaux, M. H. Nanao, E. Moyroud, S. F. Brockington, E. Thévenon, H. Chahtane,
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