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In order to survive, reproduce, and physiologically adjust in appropriate ways at the
correct times, nearly all species constantly monitor their internal and external envi-
ronments. Assessment of extracellular conditions usually involves trans-membrane
proteins, with an external domain serving as an environmental sensor, and an inter-
nal domain transmitting signals to messenger proteins that further elicit appropriate
cellular responses. These signal-transduction (ST) pathways may involve multiple
steps, but information exchange almost always involves a series of chemical and/or
physical changes in the pathway participants. ST systems are central to the nervous
systems of metazoans, but for unicellular species, they are the nervous system.

Unraveling the features of both single molecules and ensembles of them is key to
understanding the function and evolutionary properties of communication systems
at the cellular level. At the single-molecule level, ST processes are digital in the
sense that each molecular participant exhibits a finite number of effectively discrete
phenotypes, e.g., active vs. inactive conformational states. At the whole-cell level,
such information will be distributed over all of the relevant ST molecules in the cell,
providing a more graded and accurate assessment of environmental states.

The three main features of all ST pathways are sensitivity, accuracy, and speed.
First, external chemical concentrations are often in the µM range (Chapter 18), so
cells have to make decisions based on encounters with small numbers of molecules.
Second, each ST pathway is devoted to a specific environmental stimulus (or small
set of them), the menu of which is very broad, including organic metabolites, in-
organic nutrients, markers of pathogens, atmospheric gases, osmolarity, and an-
tibiotics. With up to several dozen pathways operating simultaneously within the
confines of single cells, avoidance of crosstalk among pathways is critical to maintain-
ing coherent cellular responses. Third, the chemical systems involved must generate
responses on appropriate time scales. Too slow a response can leave a cell in a
compromised physiological state, but too rapid a response can be a major energy
drain on the bewildered cell.

Many of the central players in signal transduction are enzymes, so understanding
the operation of such systems requires an appreciation of the basic features of en-
zyme kinetics. But this is not enough. As reviewed in Foundations 19.1, the kinetics
of simple one-enzyme systems are such that there is generally a smooth, hyperbolic
relationship between substrate concentration and enzyme output. In contrast, ST
pathways are generally constructed in ways that can yield much sharper responses
of the whole system to external ligand concentrations. In extreme cases, this am-
plification of external signals can lead to near switch-like behavior in phenotypic
outputs.

ST systems invoke many evolutionary questions that remain to be answered in a
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convincing fashion. First, as the accurate transmission of environmental information
along chains of pathway molecules is key to signal transduction, the recurring theme
of the evolution of cohesive molecular languages again becomes central (Chapters
15, 19, and 21). Second, because the recording and erasing of information is energy
demanding, questions emerge about the critical threshold above which the gain in
information is offset by the energetic cost of building and maintaining a communica-
tion system. Third, the innate capacity of many ST systems to generate populations
of individuals with discrete alternative states (in the absence of genetic variation)
raises questions as to whether such systems are exploited by natural selection to
operate as bet-hedging strategies, as opposed to being inadvertent by-products of
the structure of ST networks.

In the following pages, these issues will be explored mainly from the standpoint
of bacterial ST systems, which owing to their simplicity have been studied in much
more detail than the more complicated ST networks typically operating in eukary-
otes. A broad overview of the biology of ST systems, more focused on eukaryotes, is
given by Lim et al. (2015). Drawing from many examples, Wan and Jékely (2021)
have argued that eukaryotes owe their success to the evolution of more diverse and
complex sensory systems, implying that these are also more refined in terms of speed
and accuracy. However, as noted multiple times in previous chapters, success in the
eye of the eukaryotic beholder is often a false caricature of the actual situation.
Increased complexity need not mean increased functionality, and it remains unclear
if prokaryotic sensory systems are less efficient in terms of time and/or energy, let
alone less accurate than those of eukaryotes.

Bacterial Signal-transduction Systems

Relative to the complex ST systems of eukaryotes (below), those of bacteria typically
have simple enough structures that their operational features can be dissected in
detail. The simplest type of bacterial ST mechanism is the so-called one-component
system, which consists of just a single protein (usually a cytosolic transcription
factor) with an input domain serving as a signal receptor (sensor) and an output
domain transmitting information to a receiver (Figure 22.1). Almost always, the
incoming signal is a small ligand molecule that allosterically modifies the protein in
such a way as to activate the response domain, which then induces transcription in
one or more downstream target genes (Ulrich et al. 2005).

The second most common mechanism of signal transduction in bacteria is the
two-component system (Stock et al. 2000; Capra and Laub 2012), the operation of
which always involves post-translational modification of protein participants. The
first component in such systems, the signal receptor, is generally a histidine kinase
(HK) embedded in the cell membrane. Kinases are enzymes that catalyze the trans-
fer of a terminal phosphate from ATP to an amino acid on a target protein. The
extracellular domain of a HK receives environmental information, usually in the
form of a small ligand that induces autophosphorylation (addition of a phosphoryl
group, PO−2

3 ) of a specific histidine residue on the internal domain (Figure 22.1).
The phosphoryl group is then transferred to a specific aspartate residue on the sec-
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ond (intracellular) component, known as the response regulator (RR). This transfer
elicits a conformational change in the RR that in turn induces a specific cellular
response, usually with the RR operating as a transcription factor. Almost all HK
and RR proteins in such systems have homodimeric structures.

There are thus six key determinants of specificity in a two-component system:
the ligand-binding, phosphotransfer, and dimerization domains of the HK, and the
receiver, DNA-binding, and dimerization domains of the RR. Moreover, most HK
proteins are bifunctional in that when not phosphorylated, they operate as phos-
phatases on their cognate RR proteins. The ratio of kinase to phosphatase activity
dictates the output of the pathway. In E. coli, an average HK protein is present as
10 to 100 molecules per cell, whereas the cognate response regulators are generally
10 to 100× more abundant.

More complex phosphorelay systems exist in some bacteria, the simplest of
which consist of three components (Figure 22.1). Here, as with two-component
systems, a membrane-bound HK molecule first autophosphorylates at an internal
histidine residue after receiving an appropriate extracellular signal. But in this
case, the phosphoryl group is then transferred to a secondary receiver domain, often
on the same molecule (usually an arginine residue). Given the presence of both a
transfer and acceptor domain in the same molecule, such a protein is often referred
to as a hybrid kinase. A separate protein transfers the phosphoryl group to the
final acceptor, again a cytosolic RR protein. A number of variants on this type of
pathway are known, including chains of transfers from a histidine to an arginine to
another histidine, and so on. The Bacillus subtilis sporulation control system is an
example of a chain involving a series of four proteins (Sonenshein 2000).

Origin and diversification. The numbers of both one- and two-component sys-
tems in different bacterial species scale with roughly the square of genome size
(Ulrich et al. 2005; Alm et al. 2006; Capra and Laub 2012). One-component sys-
tems are about 7×more abundant than two-component systems, with most bacterial
species containing dozens (in a few cases, hundreds) of such systems in total (Figure
22.2). The HK and RR genes for most two-component systems reside in the same
operons, and hence are coexpressed. Nevertheless, many cases are known in which
single members of an operon are duplicated, and as a consequence on average, or-
phan HK and RR genes are nearly as abundant as those in operons (Burger and van
Nimwegen 2008). In addition, although they are a minority, many-to-one and one-
to-many HK-RR systems exist (Goulian 2010), with the numbers of HK proteins
in a genome usually being up to twice the number of RR proteins (Figure 22.2).
This implies that multiple signals are often transmitted through the same response
regulator.

Given the very precise mode of operation of all such systems – initial phosphory-
lation of a histidine on one protein, followed by phosphotransfer to an aspartate on
another, it is likely that this was the ancestral state of a primordial two-component
system from which most others were subsequently derived by duplication and diver-
gence. Why histidine and arginine became the chosen amino acids remains unclear.
Why phosphorylation was settled upon as the key form of post-translational modifi-
cation is also unclear, although the two negatively charged oxygens associated with
each phosphate group provide opportunities for the modification of protein structure
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by binding with positively charged residues. Such structural changes can then be
linked to alterations in protein function in a binary fashion.

The fact that the vast majority of one- and two-component systems acquire
environmental information via small-molecule binding, and elicit a final output via
transcriptional regulation motivates the suggestion that one-component systems pro-
vide the evolutionary seeds of two-component systems (Ulrich et al. 2005). However,
any such transition requires several modifications: minimally, the insertion of a his-
tidine kinase domain and a receptor domain, the physical separation of these two
domains into two separate proteins, and the acquisition of a trans-membrane do-
main by the HK. Moreover, there is no compelling reason to rule out the alternative
possibility that one-component systems are often derived and simplified versions of
two-component systems.

Coevolutionary integration of components. The multiplicity of ST systems
within cells and their operation by pairwise communication raise many questions
about their evolutionary properties. One of the central issues concerns the mecha-
nisms by which individual systems avoid the risks of miscommunication with noncog-
nate systems. Each HK generally communicates with a specific RR, although some
low level of error must occur. Indeed, some systems exhibit a low degree of crosstalk
when examined in vitro (Yamamoto et al. 2005), and crosstalk can be greatly en-
hanced if cognate partners are eliminated in vivo, owing to the release from com-
petitive binding (Siryaporn and Goulian 2008). Pathway insulation is in part an
ingrained consequence of the biochemical nature of bacterial two-component path-
ways, in particular the editing-like properties of the HK molecules. When the proper
signal for a particular pathway is lacking, its HK remains unphosphorylated and acts
primarily as a phosphatase for the cognate RR, thereby tending to erase inadvertent
phosphorylation of an RR by noncognate HKs.

Mutual HK-RR recognition is generally a function of coevolutionary changes
accumulated on just a small number of amino-acid residues at phosphotransfer do-
mains, typically < 6 sites on each protein (Li et al. 2003; Laub and Goulian 2007;
Weigt et al. 2009; Capra et al. 2012b). As a consequence, the requirements for
specificity rewiring are not high. For example, alterations of just three amino-acid
residues of the E. coli HK EnvZ (involved in osmoregulation) are sufficient to both
eliminate its ability to recognize its cognate RR and to confer full specificity to-
ward one particular noncognate RR (Skerker et al. 2008; Capra et al. 2010; Nocedal
and Laub 2022). Just single amino-acid changes can lead to mutual recognition of
cognate and noncognate RRs, showing that under the right situations, a HK can
gain an ability to recognize a novel RR without relinquishing its initial partner.
Indeed, Siryaporn et al. (2010) found that single amino-acid substitutions in an E.
coli sensor kinase called CpxA (involved in envelope stress response) can cause the
efficiency of signaling to a noncognate RR to even exceed that of the latter’s cognate
HK.

In a broader attempt to understand the degree of recognition-motif degeneracy,
Podgornaia and Laub (2015) made constructs of all possible 204 = 160, 000 amino-
acid motifs for the four key recognition residues in E. coli protein kinase PhoQ, a
signal receptor for external magnesium concentration. From this pool of variants,
1659 were found to be functional. Extending this analysis even further to include
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the recognition motif on the cognate response regulator PhoP, McClune et al. (2019)
found 58 unique PhoQ-PhoP motif combinations that yielded fully functional sys-
tems that were also completely insulated from the native system.

Given that many two-component systems operate in an essentially one-to-one
manner, these kinds of observations also suggest the capacity for substantial neu-
tral coevolutionary drift between interacting motifs, even in the face of selection for
conserved function. Recalling the theory formally evaluated in Chapter 21, such
systems drift in coupled regulatory vocabularies is expected in simple pairwise in-
teractions, so long as the maintenance of a strong degree of mutual interaction is
retained (Lynch and Hagner 2015). In principle, this could then lead to the evolu-
tion of incompatibilities among mixtures of orthologous HKs and RRs from different
taxa, in the absence of any within-species functional changes.

The few experimental attempts to shed light on this matter have yielded mixed
results. On the one hand, divergence of the recognition motifs of the components of
the bacterial PhoR-PhoB system (involved in phosphate regulation) between mem-
bers of the Alphaproteobacteria and Gammaproteobacteria is sufficient to nearly
completely prevent crosstalk (Capra et al. 2012b). On the other hand, two studies
of other systems have shown that the HK gene from a different bacterial phylum
can complement the loss of the orthologous E. coli gene (Tabatabai and Forst 1995;
Ballal et al. 2002). Likewise, the conserved ability to phosphorylate orthologous
substrate proteins from distantly related species has been noted for a different class
of bacterial signaling proteins, the tyrosine kinases, in this case despite the lack of
obvious sequence homology (Shi et al. 2014). These kinds of observations are not
necessarily incompatible with a hypothesis of neutral systems drift, although they
do highlight uncertainties in the degree to which the evolution of sequence motifs in
the individual participants are mutually constrained.

Emergence of new pathways. Although these types of observations make clear
that two-component systems can be rewired with only a small number of changes,
the challenges in establishing an entirely new ST system are numerous. A com-
mon idea is that the evolution of a novel system initiates with duplication of both
members of the pair, a scenario made plausible in bacteria by the frequent joint
occurrence of cognate HK and RR genes in the same operon and by the high degree
of congruence between the phylogenetic trees of HK and RR genes conjoined within
operons (Koretke et al. 2000). Linkage within operons ensures that both members
of an interacting pair will be coexpressed from their time of origin, an essential
ingredient for coevolutionary reinforcement.

However, ultimate preservation by neofunctionalization requires the integration
of a new signal input and/or output into a system in a way that avoids crosstalk
with the ancestral system (Figure 22.3). This, in turn, requires divergence in the
HK-RR communication language used within the duplicated pairs (Capra et al.
2012b). Evidence suggests that the amino-acid sequences within HK-RR interface
regions evolve at high rates at least in the early stages of post-duplication divergence
(Rowland and Deeds 2014), and dramatic changes in recognition motifs are known
to have accumulated among duplicated systems within the Gammaproteobacteria
(Capra et al. 2012b).

While these observations are potentially consistent with diversifying selection,
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modifications at the HK-RR phosphotransfer interface are not sufficient for the in-
sulation of two pathways. There is also a need for changes in the dimerization
interfaces of both the HK and RR molecules to prevent heterodimerization between
the diverging copies. Consistent with more general observations on the relative sim-
plicity of binding interfaces in multimeric enzymes (Chapter 13), experimental work
suggests that changes involving fewer than four amino-acid residues in dimerization
interfaces can suffice to establish a new homodimerization group (Ashenberg et al.
2011).

Capra and Laub (2012) and Rowland and Deeds (2014) have suggested that all
of these crosstalk interactions must be removed before new input/output functions
are acquired, arguing that in large bacterial populations even mutations with very
mildly deleterious crosstalk effects would be immediately removed by selection. If
this is indeed the case, then a transition to a novel signaling pathway would require
an early order of events that is essentially neutral with little to no impact on the
overall performance of the ancestral system.

A key difficulty with this hypothesis is the series of steps that must be ac-
complished – two losses of heterodimerization potential, one for the HK and one
for the RR; loss of cross-phosphotransfer potential; and the emergence of at least
one new HK-RR phosphotransfer interaction. During the period of time in which
this series of events is achieved, both systems must also avoid nonfunctionalizing
mutations (which would remove the entire system from selection). It may help
that most bacterial populations are so large that most first-step variants (as well as
double mutants) are always maintained by recurrent mutation. These might then
provide the staging grounds for the emergence of downstream mutations, which can
then proceed to fixation without any bottleneck in population fitness (Chapter 5).
However, the population-genetic conditions necessary for the origin of an insulated,
coevolving pair of proteins need to be worked out formally to resolve these numerous
open questions (Foundations 15.1 provides a starting point).

Finally, a plausible case can be made that more complex phosphorelay systems
(Figure 22.1) arise by fusion of the HK and RR components of two-component sys-
tems to produce a hybrid kinase. In principle, this may involve nothing more than
deletion of an intergenic region within an operon, provided the open-reading frames
of both components remain intact (Zhang and Shi 2005; Cock and Whitworth 2007).
Such a starting point would facilitate the evolution of a new signaling system, as the
HK and RR are open to communication from the onset. In addition, their enforced
proximity within the same molecule would reduce the necessity of high affinity be-
tween the pair, thereby enhancing the likelihood of evolutionary motif divergence.
Consistent with this idea, empirical work has shown that when the kinase domain of
a phosphorelay system is disconnected from its receiver domain, the level of crosstalk
increases substantially (Wegener-Feldbrügge and Søgaard-Andersen 2009; Capra et
al. 2012a). Once established with novel communication motifs with little potential
for crosstalk, such a phosphorelay system might then revert back to the structure
of a two-component system by a fission event.

Interconvertible Proteins and Ultrasensitivity
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Despite their relatively simple modular structures, ST pathways exhibit an array of
unusual features at the biochemical and cellular level. Central to understanding such
behavior is the concept of an interconvertible protein whose active vs. inactive states
are defined by the presence/absence of post-translational modifications. As already
discussed, the most common case by far is the phosphorylation/dephosphorylation
cycle, in which a specific ATP-dependent kinase attaches a phosphoryl group to
a particular amino-acid residue on the interconvertible protein, and a specialized
phosphatase is responsible for the reverse reaction. In the simplest bacterial systems,
the same enzyme is often used for both the addition and removal of the modification,
but in eukaryotes different enzymes are generally deployed in each transformation.
The joint activities of kinases and phosphatases, along with the concentration of the
intermediate protein (here viewed as a response regulator), determine the fractional
activity of the latter, which ultimately dictates the cellular response.

In the following discussion, the three proteins will be denoted as F (forward
converter, e.g., a kinase), R (reverse converter, e.g., a phosphatase), and I (in-
terconvertible protein) (Figure 22.4). Although such systems have discrete on/off
states at the single-molecule level, this is not the case for the entire ensemble of
molecules at the cellular level. Instead, the proportional levels of alternative forms
of I (active Ia, and inactive Ii) can fall over an essentially continuous range of 0.0 to
1.0, depending on the activities of the converter enzymes (F and R). In one range
of parameter space, the forward (kinase) reaction will dominate, and the majority
of I will exist in its active form, whereas for other parameter values, the reverse
(phosphatase) reaction will dominate, rendering the average molecule of I inactive.
As will be revealed below, however, the real novelty of such systems is their capacity
to generate switch-like behavior, from nearly completely off to nearly completely on
with just a small change in signal concentration.

The degree to which the fractional activation of I depends on the concentration
of the external signal, in the form of a ligand SF, dictates the magnitude of the
overall cellular response. Recall that with standard two-parameter Michaelis-Menten
enzyme kinetics, there is a fairly gradual response of the system output to the
substrate concentration, describable with just two parameters (Chapter 19). In
contrast, with a triad of interacting proteins, more than ten parameters, including
the kinetic coefficients of enzymes F and R, determine the partitioning of the total
concentration of I, denoted [IT], into its active and inactive forms (Figure 22.4;
Foundations 22.1). As a consequence, the level of I activation can exhibit a far
richer array of behaviors than possible with basic enzyme kinetics, even though both
enzymes F and R behave as Michaelis-Menten enzymes with I as their substrate.

Consider the situation in which the active vs. inactive form of converter enzyme
F depends on whether it is bound to its ligand SF (Figure 22.4), and recall that with
Michaelis-Menten enzymes, the rate of a reaction is hyperbolically related to the
substrate concentration, [SF], as described with Equation 19.1.4. With increasing
[SF], enzyme F is expected to be increasingly converted to its active form Fa. If,
however, Fa feeds into a loop involving the interconvertible enzyme I, the fraction of
active enzyme, I∗ = [Ia]/[IT], can reach much higher levels than the fraction of active
F at low levels of the input substrate SF (Figure 22.5, upper panel). In other words,
the signal from the external ligand can be substantially amplified. This is because
the total concentration of I constitutes a closed system, enabling Fa to cumulatively
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convert Ii to Ia.
The degree of amplification also depends on the kinetic parameters of the reverse

converter, which provides the only route back to Ii. As the forward conversion
reaction increasingly overwhelms the reverse reaction, the phosphorylation reaction
dominates, and [Ia] → [IT]. On the other hand, as the kinetic efficiency or amount
of enzyme R increases, the phosphatase reaction increasingly dominates, and the
system can converge to situations in which I can never attain a fully active state,
even at the highest concentrations of the external ligand (Figure 22.5, upper panel).

A key assumption underlying the preceding results is that the total concentra-
tion of I is substantially below the half-saturation constants for the forward and
reverse reactions (Stadtman and Chock 1977), so that the active forms of enzymes
F and R are not saturated by their substrate. In this case, a simple expression can
be obtained for the fraction of activated intermediate enzyme,

I∗ =
κF[Fa]

κR[Ra] + κF[Fa]
, (22.1)

where κx is the kinetic efficiency of enzyme x operating on substrate I (from Equa-
tions 22.1.7a,b). In this nonsaturating case, the forward and reverse rates of con-
version of I are both linearly related to their substrate concentrations, and I∗ is
independent of the total concentration of intermediate enzyme, [IT], in the system.
Furthermore, because the amounts of active converter enzymes, [Fa] and [Ra], are
Michaelis-Menten functions of their ligand concentrations (Equations 22.2.3a,b), I∗

is also a conventional hyperbolic function, in this case of κF[Fa].
Goldbeter and Koshland (1981) found that with increasing concentration of I in

the system (so that the responses of Fa and Ra to their substrate concentrations are
no longer linear), the response of I∗ to ligand concentrations is no longer hyperbolic
or independent of [IT]. Rather, the steepness of the activation response to ligand
concentrations elevates dramatically with increasing [IT], in the extreme becoming
an effectively stepwise process (Figure 22.5, lower panel). This sharp response,
often referred to as zero-order ultrasensitivity, arises because high levels of I allow
the converter enzymes to operate at maximum capacity, thereby sharpening their
responses near the threshold between the kinase and phosphatase domains on the
scale of ligand concentrations. At low levels of the external ligand, the reverse
(phosphatase) reaction dominates, and with a high level of I pushes the rate of a
conversion to Ii to the maximum. At high levels of the external ligand, the forward
reaction overwhelms the reverse reaction, pushing Ia to the maximum level.

To summarize, the use of an interconvertible-enzyme system can alter both
the sensitivity and the amplitude of response of a signaling system to the input
ligand concentration. Most notably, for sufficiently high concentrations of the central
enzyme I, near switch-like behavior of the population of active I molecules arises.
Thus, should a selective scenario exist in which switch-like behavior is advantageous,
mutational fine tuning of the kinetic parameters of the enzymes underlying the ST
system, combined with the maintenance of a sufficiently high level of I, can provide
an evolutionary path towards such behavior.

Here, it should be emphasized that it is an open question as to whether the
switch-like behavior implied by the mathematics of these kinds of systems com-
monly occurs in cells, let alone is promoted by selection. In fact, zero-order ul-
trasensitivity has not yet been directly demonstrated in in vivo signal-transduction
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systems (Blüthgen 2006). Moreover, as pointed out by Ortega et al. (2002) and Xu
and Gunawardena (2012), such an extreme response requires that the phosphoryla-
tion/dephosphorylation reactions are intrinsically irreversible, such that a predomi-
nating kinase can literally drive I to the point at which all molecules are in the active
state. With most enzymes, a high product concentration generally drives reactions
in their reverse direction, leading to a steady-state situation in which both active
and inactive molecules coexist within a cell. The situation is even more complicated
in bacterial two-component systems, where the same enzyme often serves both the
F and R functions, rendering the maintenance of high substrate concentrations for
both enzymatic functions (necessary for ultrasensitivity) difficult to achieve.

The cost of signal transduction. Acquisition, processing, and propagation of
information requires energy, whether via a computer (Landauer 1988) or by the
nervous system of a metazoan (Mehta and Schwab 2012; Niven 2016; Kempes et
al. 2017; Levy and Calvert 2021). Quiescent nerve tissue consumes energy just to
maintain a steady response capacity, and the same is true for the interconvertible
enzymes at the heart of ST systems. In addition to the structural costs, there is
the additional matter that the relay signal (the relative concentrations of active and
inactive I molecules) must be constantly adjusted by the simultaneous running of
two pathways (phosphorylation and dephosphorylation) in opposing directions in
order to convey information on the cellular environment.

For this reason, the dynamics of the proteins underlying ST systems are often
referred to as push-and-pull or futile cycles – even when the system settles into a
steady-state in a constant environment, active and inactive I molecules are contin-
uously being interconverted, leading to a cyclical flux. However, the word futile is
a bit of a misnomer here, in that phosphorylation/dephosphorylation cycles are the
price a cell must pay to keep a ST system in a constant state of readiness.

Because each phosphorylation event requires hydrolysis of an ATP molecule, a
rough idea of the cost of maintaining a particular level of system activity can be ob-
tained by noting that at steady state, the reciprocal rates of activation/inactivation
of I molecules must be completely balanced and equal to the rate of ATP consump-
tion. The cost of running a signal-transduction system can then be obtained from
measures of in vivo rates of ATP consumption by the pathway kinases. For example,
Shacter et al. (1984) noted that the flux through hepatic (liver) pyruvate kinase is
VATP = 20 to 200µM/min, depending on the level of activation of the intermediate
protein. Assuming a cell volume of ∼ 5000µm3 = 5× 10−12 liters, a cell division time
of 24 hours, and converting moles to number of molecules using Avogadro’s number,
the total rate of ATP consumption per cell by this kinase is then of order 1010 to
1012 molecules/cell division.

As usual, a quantitative understanding of what this energetic cost means to the
cell requires information on the total cellular energy budget. From Chapter 8, for a
cell of this size and cell-cycle length, total cell maintenance costs are ∼ 2×1013 ATP
hydrolyses/cell cycle, implying that a single mammalian ST system can demand
up to 5% of a cell’s basal-maintenance energy budget. From a knowledge of the
concentration of the kinase and phosphatase in this system and their molecular
sizes (∼ 2600 and ∼ 1430 amino acids, respectively), the construction cost of the
entire system can be shown to be ∼ 2 × 1011 ATPs (not including the cost of the
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interconvertible enzyme). Thus, in this particular example, the costs of running and
building the system are of the same order of magnitude.

Estimates for other mammalian kinases derived in Goldbeter and Koshland
(1987) are in this rough range as well. Studies with yeast, ciliates, and zebrafish
embryos have shown that such expenditures in cell signaling can be sufficient enough
to be discerned as heat-dissipation oscillations during the eukaryotic cell cycle (Poole
et al. 1973; Lloyd et al. 1978; Rodenfels et al. 2019).

Similarities and differences in eukaryotic systems. Eukaryotic signal trans-
duction systems are generally much more complex than those in bacteria. Although
kinases and phosphatases are still broadly utilized, different amino acids typically
serve as the sites of phosphorylation – usually serine, threonine, and tyrosine, with
the latter largely confined to metazoans. Moreover, whereas bacterial histidine
kinases produce phosphoramidates by phosphorylating side-chain nitrogen atoms,
eukaryotes phosphorylate oxygen atoms on serine, threonine, and tyrosine residues,
creating phosphoesters, which are much more energetically stable. The reasons for
this shift in target residues is unclear, but one possibility is that enhanced stability
is essential for activated molecules that have to travel larger distances in eukaryotic
cells. Some two-component systems involving autophosphorylating histidine kinases
are known in plants, fungi, and slime molds, but they are absent from a number of
eukaryotic lineages, notably metazoans (Loomis et al. 1997; Schaller et al. 2011).

Given that eukaryotes are derived from archaea, it is of interest to know the
nature of ST systems in the latter, but there is an unfortunate void of knowledge
here. It is known that many archaea are entirely lacking histidine kinases, and that
perhaps all have serine/threonine kinases (Makarova et al. 2017). Most unusual
is the apparent exploitation of KaiC-like ATPases in a wide variety of signaling
pathways across the archaeal phylogeny. Recalling from Chapter 18 that KaiC is at
the heart of the phosphorylation/dephosphorylation cycle that forms the circadian
clock in cyanobacteria, the latter may have been acquired by horizontal transfer
from archaea.

The numbers of kinases in eukaryotes scale with roughly the square of the total
number of proteins, similar to what is seen in bacteria, and substantial lineage-
specific expansions of particular families have arisen (Anantharaman et al. 2007).
However, in eukaryotes, each of the interacting enzymes typically engages with mul-
tiple substrate proteins (Figure 22.6), often more than a dozen, leading to complex
networks quite unlike the well-insulated systems of bacteria. Hence, the elegant
molecular dissections that have been accomplished for bacterial ST systems are a
rarity for eukaryotes. Nonetheless, for the few simple eukaryotic systems that have
been investigated, many of the principles outlined above for bacteria with respect
to motif evolution still apply. For example, a transcription factor involved in the
response to amino-acid starvation in the yeast S. cerevisiae (Gcn4) is targeted for
degradation by a specialized kinase (Pho85), but whereas the same system operates
in the yeast Candida albicans, the cross-species components are incapable of molec-
ular recognition (Gildor et al. 2005). As discussed above for bacteria, this kind of
coevolutionary wandering of the motif language used in information transfer in the
face of conserved function is consistent with the operation of mutually constrained
systems drift.
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There can, however, be limits to the degree to which such wandering extends.
For example, Zarrinpar et al. (2003) found that a kinase (Pbs2) involved in the
osmoregulation pathway in S. cerevisiae interacts specifically with one particular
membrane-bound sensor protein, despite the presence in this species of 26 other
related sensor proteins with rather similar recognition sequences. However, when
orthologs of these off-target proteins from other distantly related species were pre-
sented to Pbs2, strong cross-species recognition often occurred. This suggests that in
this case there has been significant negative selection within yeast to avoid off-target
interactions, with the suppressing motifs diverging among lineages.

Unlike the situation in bacterial ST systems where just a single amino-acid
residue is typically modified on the intermediate protein to elicit a response, eu-
karyotic ST proteins commonly have multiple phosphosites (Chapter 14). Because
the activity of the modified enzyme can require a complete set of phosphorylated
sites, and the sequential ordering of marks may follow a rigid recipe, this introduces
novel twists to the types of models discussed in the preceding section. Contrary to
the switch-like behavior found with simple systems with single-site modifications,
the use of multiple phosphorylation sites for activation leads to a more graded re-
sponse. Although there is still a threshold level of substrate below which the system
is inactive, there can be a simple Michaelis-Menten-like response above the threshold
(Gunawardena 2005). Thus, although the reason for the use of multiple phospho-
sites in eukaryotic ST-pathway enzymes remains unclear, refined enhancement of
switch-like behavior does not seem to be a viable hypothesis.

Limited attention has been given to the consequences of the kinds of shared uti-
lization of kinases/phosphatases illustrated in Figure 22.6 (left). However, focusing
on the simple case of enzymes with single modifiable sites, Rowland et al. (2012)
found that coupled systems can often behave in a transitive fashion, such that if
one intermediate substrate saturates the controlling enzymes in a way that leads to
switch-like ultrasensitivity, all other connected intermediate enzymes will behave in
the same way. In effect, saturation by one intermediate substrate alters the control-
ling enzymes (F and R) to fully active states, governing the entire system. This can
even happen when all multiple intermediate substrates are below saturation levels,
provided the aggregate is sufficient for saturation. Whether these kinds of collective
effects are evolved mechanisms for coordinated ultrasensitivity in eukaryotic cells or
simple inadvertent consequences of complex networks remains unclear.

One of the most pronounced differences between eukaryotic and bacterial ST
systems is the extended length of the former, with a relay of three kinases being
particularly common (Figure 22.6, right). For example, MAP (mitogen-activated
protein) kinase kinase kinases phosphorylate MAP kinase kinases, which in turn
phosphorylate MAP kinases that finally transmit information to a response regu-
lator. Many variants of the MAP kinase family are deployed in wide variety of
eukaryotic cellular processes, and their efficiency of operation and degree of insula-
tion is enhanced by the use of scaffold proteins that physically link all three layers
of each pathway into single complexes.

How and why ST pathways with extra steps evolve remains unclear. Armbruster
et al. (2014) argue that additional steps enable pathways to integrate out the effects
of environmental noise on the elicited response, but again, this leaves unanswered the
question as to why bacteria would not take advantage of such possibilities, especially



12 CHAPTER 22

given the likelihood that small bacterial cells may be more subject to stochastic
effects than their larger eukaryotic counterparts. An alternative possibility is that, as
with gene regulatory systems (Chapter 21), more complex systems passively emerge
in lineages experiencing elevated levels of random genetic drift.

Finally, eukaryotes harbor another broad class of intracellular messaging sys-
tems, the so-called G proteins, used in a wide range of cellular activities, including
vesicle transport and import/export through nuclear pores (Chapter 15). These
proteins operate in a quite different way than those noted above, through binding
of GTP rather than via phosphorylation of amino acids. Nonetheless, the kinetics
of the overall systems follow the same general plan as the interconvertible proteins
noted above. G proteins have alternative on/off states driven by opposing enzymes
responsible for GTP addition and removal, which in turn lead to conformational
changes in the substrate G protein: writers called guanine nucleotide exchange fac-
tors (GEFs) add GTP to the G protein, putting it in the active state, whereas erasers
called GTPase-activator proteins (GAPs) hydrolyze the GTP to GDP. Most GEFs
are membrane-bound G-protein-coupled receptors (GPCRs) that become activated
upon binding an appropriate ligand, presenting a still further analogy with the types
of systems noted above. A whole realm of theoretical investigation, involving all of
the issues noted in Chapter 21 for gene expression, awaits exploration here (Kapp
et al. 2012).

Chemotaxis

The most ornate ST systems in bacteria drive chemotaxis, which directs motility
towards particular chemo-attractants (or away from repellants). Although such
systems have a kinase and a response regulator at their core, the output is modulated
by up to nine other participants (Figure 22.7). The system operates like a “bacterial
eye.” Rather than being membrane-bound, the histidine kinase, CheA, is located at
the base of a sensory complex, connected to a special set of chemoreceptors (called
methyl-accepting chemotaxis proteins or MCPs) residing at the cell surface. Rather
than functioning as a transcription factor, the response regulator, CheY, interacts
directly with the base of the flagellum, influencing the direction of flagellar rotation
and thereby the swimming behavior. This allows for a much more rapid response
than with conventional two-component systems that regulate gene expression.

The MCPs typically sit in one or two large hexagonal arrays at the cell surface,
organized in a honeycomb-like form, with thousands of trimers of receptor dimers
forming the vertices and acting as relays to CheA (Briegel et al. 2009). In E. coli,
there are five forms of MCPs, with various sensitivities to different ligands such
as sugars or amino acids. As the different forms are mixed together within the
arrays, this allows the cell to simultaneously process complex information about
the environment. Cooperative interactions between adjacent elements sharpen the
response (Mello et al. 2004). Absent from eukaryotes, this type of sense organ
appears to have been horizontally transferred to some archaeal lineages (Briegel et
al. 2015), even though the archaeal flagellum evolved independently (Chapter 16).

Although the complex kinetic and dynamical features of the E. coli chemo-
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taxis system have been worked out in considerable detail (Barkai and Leibler 1997;
Keymer et al. 2006; Mello and Tu 2007; Bitbol and Wingreen 2015; Colin and Sour-
jik 2017), these technicalities will not be covered here. The key point to appreciate
is that bacterial chemotactic responses are achieved by comparing a current ligand
concentration with that in the recent past, reflected in part by the level of recep-
tor methylation. Specialized methyltransferases and methylesterases regulate the
methylation level of four key residues on the MCPs, providing them with a capacity
for adjusting the level of sensitivity over a broad range of ligand concentrations.
High levels of methylation result from high levels of ligand concentration, but by
altering ligand affinity, this resensitizes the system to higher levels of chemoattrac-
tant that would otherwise be saturating. Thus, the system operates similarly to the
way in which a vertebrate eye adjusts to different levels of light, enabling the cell to
maintain a constant sensitivity to changes in ligand concentration regardless of the
absolute ligand concentration.

Transmission of information on the external ligand concentration to the mod-
ified response regulator is accomplished through the response mechanisms noted
above. In this case, CheA and then CheY become phosphorylated / dephosphory-
lated in the absence / presence of ligand binding, and the resultant switch dictates
whether the flagellum rotates in a clockwise vs. counterclockwise fashion. When
phosphorylated, CheY becomes bound to the flagellar base, which causes tumbling
and a change in swimming direction, whereas CheY disconnects when dephospho-
rylated by phosphatase CheZ, inducing the swimming that propels the cell forward.
This sort of guided behavior then leads to a biased random walk in the direction of
a perceived chemical gradient.

As noted above, the maintenance of the information utilized in ST systems re-
quires an energy expenditure, and in this rapidly responding CheA/CheY system,
the costs are quite high. For an E. coli cell, the opposing processes of phosphoryla-
tion and dephosphorylation result in the consumption of ∼ 5 × 106 ATPs per hour
(Lan et al. 2012; Govern and ten Wolde 2014), which is about 10% of the cost of
swimming in this species (Chapter 16). Additional ATPs must also be consumed
in the opposing methylation and demethylation reactions operating on the MCPs,
although the numbers are unclear.

Approximately 50% of bacterial species have a chemotaxis system, although
the architectural features vary widely, with some having additional proteins out-
side of the core CheA and CheY (Wuichet and Zhulin 2010; Abedrabbo et al. 2017).
Whereas E. coli has five types of receptor proteins, the number ranges from 1 to 30 in
other bacteria (Wadhams et al. 2005). For example, the purple photosynthetic bac-
terium Rhodobacter sphaeroides has nine different receptor proteins, as well as four
versions of CheA and six of CheY, which engage in nonrandom crosstalk, presum-
ably broadening the capacity for environmental differentiation (Porter and Armitage
2002, 2004).

A clear example of the evolutionary rewiring of such systems is revealed by the
contrast between the E. coli network, described above, and that in the soil bacterium
Bacillus subtilis. Whereas interaction of phosphorylated CheY with the flagellar
motor induces clockwise rotation and tumbling in E. coli, it induces counterclockwise
rotation and directional swimming in B. subtilis; and whereas the phosphatase CheZ
dephosphorylates CheY-P in E. coli, this function is carried out by a flagellar motor
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protein in B. subtilis (Szurmant et al. 2004; Yang et al. 2015).

Chemotaxis enables organisms to move up resource gradients, thereby leading
to an elevation of cell growth and clonal expansion. However, the mechanism of
accrual of any such advantage may be more nuanced. In an otherwise homogeneous
environment, populations of organisms at the edge of their range will indirectly
generate a gradient of a chemo-attractant through their own activities, thereby
causing continued migration (Adler 1966). Indeed, Cremer et al. (2019) found that
even under conditions in which resources are nonlimiting to growth, E. coli still
migrate towards a chemo-attractant of no nutritional value. This leads to range
expansion, which increases the overall population growth rate, as the migrating cells
at the leading edge extend the clonal range over a greater area, while the laggards
utilize the still plentiful nutrients in the space left behind. Clones modified to be
insensitive to chemo-gradients experience lower overall growth rates because more
cells experience local resource limitation.

Notably, however, if the attractant itself is the primary nutrient, this effect is
not seen. In this case, if the nutrient is nonlimiting, the strong self-produced gra-
dient of attractant necessary for expansion does not occur, and if it is too limiting,
the migrating wave depletes the nutrients remaining for any laggards (Cremer et al.
2019). Thus, although the usual view is that chemotaxis has evolved as a mecha-
nism for moving towards more immediately beneficial conditions, these observations
suggest a role for simply expanding into unoccupied locations even under nutrient
replete conditions.

It is unclear whether the kinds of spatial structure that can arise on a completely
unoccupied solid surface, as employed in these experiments, generalize to other set-
tings. Notably, when E. coli is grown in a well-mixed liquid environment (which
prevents the development of chemical gradients), cells increase their investment in
motility when grown in nutrient-poor conditions, consistent with the idea that such
a shift is a searching mechanism for more nutrient-rich situations (Ni et al. 2020).
In addition, laboratory populations of E. coli exhibit higher levels of chemotaxis
towards amino acids that serve as more nutritional resources, although such a cor-
relation does not exist for B. subtilis (Yang et al. 2015). Such mixed results may
exist because utility in a laboratory setting need not reflect the conditions under
which differential chemosensitivity evolved in nature. For example, whereas amino
acids are commonly used as nutrients in the intestinal bacterium E. coli, they may
simply serve as indicators of other resources in the soil bacterium B. subtilis.

Much less attention has been given to the mechanisms of chemotaxis in eukary-
otes, outside of issues related to cell migration and signaling in metazoan develop-
ment. Unlike small bacteria, whose arrayed chemoreceptors monitor nutrients in a
temporal manner, larger eukaryotic cells populate their entire surfaces with recep-
tors and are able to sense spatial concentration gradients of < 5% from the front to
the rear of the cell (van Haastert and Postma 2007).

The best eukaryotic example comes from the slime mold Dictyostelium dis-
coideum. During times of nutrient scarcity, the amoeboid cells of Dictyostelium ag-
gregate into multicellular slugs, with recruitment being induced by waves of cyclic
AMP emanating from the aggregation center about every 6 minutes. Surrounding
cells respond by producing pseudopods in the direction of the front of the plume,
and continue to do so even after the wavefront has passed such that the cells are
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confronted with a downward gradient. Skoge et al. (2014) found that the solution
to this “back of the wave” problem involves memory-like processes associated with
positive feedback. As a wave approaches, the front of the cell is sensitized, whereas
the back of the cell is desensitized, and the message to move forward persists for
several minutes owing to the slow decay of the positive-feedback mechanism. The
kinetics of the response system appear to have coevolved with the signaling system,
as exposure to waves with periodicities exceeding 6 minutes leads to reversals in
migratory behavior.

Accuracy of environmental assessment. To improve fitness, the environmental
sensing mechanisms of cells must provide accurate information on the concentrations
of relevant ligands in the surrounding medium. However, the capacity to make
environmental assessments resides in the degree to which signal receptors on cell
surfaces bind to their ligands, which is an inherently stochastic process, owing to
fluctuations in molecular arrival times and binding success at individual receptors.
This raises significant questions about the conditions under which chemoreception
can actually convey accurate information about environmental conditions. These
problems were first analyzed by Berg and Purcell (1977), who viewed the expected
degree of occupancy of a receptor as a counting mechanism for assessing ligand
concentrations (Foundations 22.2).

Considering the features of a single receptor molecule, the basis for their pri-
mary result starts with the assumption that the long-term average probability
of occupancy of a receptor is described by a function of Michaelis-Menten form
p = c0/(KD + c0), where c0 is the environmental concentration of the ligand, and KD

is the dissociation constant, equivalent to the concentration at which the receptor
has a 50% probability of being bound (Chapter 19). Rearrangement of this expres-
sion shows how c0 is predicted by p. For low ligand concentrations, c0 � KD, the
relationship between p and c0 is essentially linear (p ' c0/KD), but with increasing
c0, the expected degree of occupancy approaches saturation (i.e., p ' 1.0). To be
most effective in transmitting information, i.e., to maximize the response of p, a
receptor should have a dissociation constant larger than the typical environmental
concentration.

Owing to the transient nature of binding, individual receptors have binary states
at any particular time (bound or unbound). Thus, accurate assessment of informa-
tion via the degree of occupancy requires a long enough time for the averaging of
repeated instances of binding and unbinding. Assuming the cell continuously mon-
itors the environment for a time period T , a measure of the error in inference of
the true environmental concentration (c0) is provided by the coefficient of variation
(CV, ratio of the standard deviation of the inferred concentration to c0)

σc
c0

=

√
1

2Drsc0(1− p)T
, (22.2)

where D is the diffusion coefficient for the ligand, rs is the radius of the receptor at
the cell surface (the target size), and p is the function of c0 defined above (Berg and
Purcell 1977).

Full derivation of this expression is given in Foundations 22.2, but its final
structure meets intuitive expectations. The quantity 4Drsc0 is the rate at which a
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ligand particle diffuses to a receptor, and a longer T means that the receptor can
integrate information over a longer series of bound and unbound states. Thus, the
level of noise in assessment scales negatively with the encounter rate and time, but
positively with the degree of occupancy p. As p→∞, the surface receptor becomes
saturated, providing little quantitative information on the environmental state, i.e.,
σc/c0 → ∞. As noted in Foundations 22.2, given typical estimates of D, even for
quite low ligand concentrations, a measurement duration of several seconds can be
sufficient to reduce the CV to near 0.01, i.e., to a level of ∼ 99% accuracy in the
estimation of the true environmental concentration.

The statistical relationship conveyed by Equation 22.2 is just one of many pos-
sible criteria for evaluating the accuracy of environmental monitoring, in this case
a time-averaged fractional occupancy of receptors. Arguing that only the length of
unbound periods provides information on the environmental concentration of ligand,
Endres and Wingreen (2009) showed that if the cell were instead somehow able to
sense the duration of unbound intervals and use this alone as an estimate of c0, the
uncertainty in Equation 22.2 would be reduced by a factor of 1/

√
2. Still another

alternative arises if the “counter” resides within the cellular interior, in which case
the result in Equation 22.2 would need to be multiplied by 1.6 (Berg and Purcell
1977); the noise is elevated in this case because molecules transiently trapped within
the cell (as opposed to being released into the environment) can be recounted, ef-
fectively reducing the number of independent evaluations per unit time. Finally,
whereas the preceding calculations assume that the cell is evaluating a constant
environment, gradient sensing (i.e., monitoring the rate of change of ligand con-
centration, as in swimming up a gradient, or contrasting the inferred concentration
at two ends of a stationary cell) might be employed. Endres and Wingreen (2008)
found that gradient sensing at the cell surface yields a measure identical to Equation
22.2, whereas monitoring inside the cell leads to a 2.9× increase in the noise level,
again emphasizing the advantages of monitoring at the cell surface.

Notably, all of the above refinements only change Equation 22.2 by a constant
multiplier. However, all of these measures ignore the biochemical aspects of binding
to receptors, making the assumption that the whole sensing process is essentially
diffusion limited; the necessary modification for including the former is described
in Foundations 22.2. In addition, it should be emphasized that the measure of
noise outlined here does not necessarily translate linearly to that expected after
transmission to the downstream response regulator, an issue taken up by Mehta
and Schwab (2012). Although uncertainty remains as to how cells actually count,
these varied formulations illustrate an array of potential mechanisms that may be
just as accurate as human decision-making processes.

Questions remain as to the optimal spatial configuration of collections of sensor
molecules (Iyengar and Rao 2014). Spatial clustering reduces the sampling error in
the vicinity of the array, whereas the spreading of receptors across the cell surface
improves average sensing in spatially variable environments. Even in an environment
that is spatially uniform on the scale of the length of the cell, sensor aggregation
can enhance information transfer into the cellular interior if cooperative interactions
exist among adjacent receptor molecules, as appears to be the case for bacterial
sensor arrays (Briegel et al. 2009). Although information on the key microanatomical
features remains to be determined, with n effectively independent receptors, the
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denominator of Equation 22.3 would just be multiplied by
√
n. With cooperation

among receptors, the denominator needs to be multiplied by
√
nx with x > 1.

There remain many unanswered evolutionary questions in this area. Relative
to the situation with the nervous systems of metazoans, how much of the energy
budgets of single-celled organisms is devoted to environmental monitoring and de-
cision making? What allocation of resources to environmental sensors optimally
balances the costs of production of such molecules and the advantages accrued?
Confronted with increasing levels of environmental variation, at what point does
sensory overload and the energetic cost of running a chemoreception system offset
the advantages of tracking environmental changes? What role does the timescale
of environmental fluctuations (e.g., within vs. between generations) play in these
processes? Evolutionary theory relevant to these questions can be found in Lynch
and Gabriel (1987), Lan et al. (2012), and Govern and ten Wolde (2014), but to
be of full use, this work will need to be integrated with the known cell biological
features of chemosensory systems.

Phenotypic Bimodality and Bet Hedging

ST systems provide one means for physiological acclimation within the lifespan of an
individual cell. An alternative mechanism for dealing with environmental stochas-
ticity is to generate phenotypic diversity independent of current environmental in-
formation. Here, the focus is not on genetic polymorphism, but on the production of
variable offspring by individual genotypes. This second option provides a potential
advantage in that a segment of a clonal population may be immediately poised to
deal with an environmental shift, but this comes at the cost of being maladapted
at other times. Moreover, the possibility exists that all phenotypes will be subop-
timal on some occasions. If phenotypic diversification among clonal progeny is to
be promoted by natural selection, it must increase the long-term genotypic growth
rate relative to that in other clones.

Although phenotypic distributions of many biological traits are continuous in
form (Lynch and Walsh 1998), striking cases of discrete bimodal states are known
in microbes, e.g., dispersing vs. sedentary states, vegetative reproduction vs. spore
formation, and activation vs. silencing of metabolic pathways. In some situations,
different lineages of genetically identical cells can become trapped in alternative
states for indefinite periods, even after the initiating environmental signal has dis-
sipated. Such a condition is known as hysteresis.

There are a number of ways by which such phenotypic switching can be mod-
ulated by the types of ST pathway architecture noted above. Consider the case
of ultrasensitivity illustrated in Figure 22.5. Should cells straddle the threshold
point, either because of stochastic internal cellular variation (e.g., molecular inher-
itance and/or transcriptional noise) or external environmental variation in ligand
concentrations, individuals would receive entirely different messages for downstream
phenotypic modification. In other words, adding noise to the otherwise determinis-
tic model noted above will lead to some level of phenotypic switching. In this case,
the duration of dwell times in alternative states would depend on the magnitude of
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fluctuations and the degree to which they are sustained.
Sustained bimodality can arise when there is positive feedback between the

activated intermediate substrate and its activation enzyme, as shown graphically in
Figure 22.8. In the absence of feedback, the rate of activation of the intermediate
substrate declines smoothly to 0.0 as the fraction of active intermediate enzyme
(I∗) approaches 1.0. In this case, with the rate of deactivation increasing smoothly
with increasing I∗, a single intersection between these opposing functions leads to a
single stable steady-state point for I∗ (Figure 22.8a). When I∗ exceeds this point,
the rate of deactivation exceeds that of activation, and I∗ declines, and vice versa if
the starting point is below the equilibrium steady-state.

If, however, there is positive feedback between I∗ and the activating enzyme,
the form of the activation function can be altered in such a way that there are up to
three alternative equilibria for I∗ (Figure 22.8b). In this case, when I∗ is sufficiently
low, increasing I∗ further accelerates its own production by positive feedback, but
eventually the rate of activation must decline (as in the case of no feedback, as a
natural consequence of the reduction in inactivated substrate). If the inflection in
the activation function leads to three intersections with the deactivation function,
the intermediate equilibrium will be unstable, with deviations in either direction
resulting in movement towards the flanking equilibria, both of which are stable.
Thus, depending on their starting states, cells will gravitate towards one or the
other alternative stable states, and remain there until fluctuations in the internal
and/or external environments shift I∗ into an alternative basin of attraction. Such
a system is said to exhibit bistability.

Assuming that the different equilibrium levels of I∗ are sufficient to lead to al-
tered downstream patterns of gene expression, bistability of an underlying ST system
provides a basis for eliciting discrete differences in phenotypic states of otherwise
genetically identical cells. The relative frequencies of alternative states will depend
on the underlying enzyme kinetics of the system and the magnitude and frequency
of fluctuations in the governing parameters.

Bistability can arise under a number of other scenarios, including those involv-
ing inhibition, provided the number of inhibitory steps is even. If, for example, Ia

inhibits the reverse enzyme, while Ii inhibits the forward enzyme (Figure 22.4), a
situation can arise in which one of the modifying enzymes, but not both simultane-
ously, can be common. In addition, many bacterial ST systems exhibit autoregu-
lation, with the response regulator (RR) activating the transcription of the operon
containing it (Gao and Stock 2013). This too can generate bistability – when the
RR level is high, RR gene expression remains high because of the positive feedback
loop; but when the RR level is low, the concentration remains at the basal level of
expression (Ferrell 2002; Igoshin et al. 2008; Hermsen et al. 2011; Ram and Goulian
2013).

Adaptive fine-tuning vs. inadvertent by-products of pathway structure. Taken
together, these theoretical results indicate that without any direct selection at all,
the basic structure of ST systems endows genotypically uniform populations of cells
with a capacity to develop bistable phenotypic polymorphism. As described below,
this is reflected in a number of dramatic dimorphisms in cell morphology and/or
behavior. However, less visible, molecular-level shifts may also commonly arise
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from the structural underpinnings of ST systems.

This being said, while being conducive to bistability, feedback-containing net-
works do not guarantee it (Cherry and Adler 2000; Angeli et al. 2004; Nichol et
al. 2016). The conditions for existence of dual equilibria and the relative sizes of
the basins of attraction for the alternative stable points (when they do exist) are
sensitive to the underlying kinetic parameters of the pathway constituents. For
example, changes in the elevation of the activation/deactivation response curve in
Figure 22.8b can lead to there being just a single intersection, implying monostabil-
ity. This then suggests the feasibility of the evolutionary fine-tuning of underlying
features of ST systems via the selection of appropriate mutations to favor pheno-
typic switching vs. uniformity. Indeed, because bistability may often be deleterious,
with one or both cellular states far from optimal, selection may often operate to
move the key kinetic parameters of ST systems to levels that minimize the chances
of phase shifting (Hermsen et al. 2011).

A striking example of the types of processes that govern the dynamics of bista-
bility is known for the bacterium Bacillus subtilis, which stochastically switches
between a motile single-celled state and a nonmotile, chained state (Norman et al.
2013). In this system, switches to alternative states are governed by a double-
negative feedback loop. One protein confers the motile, colonizing state, and the
other promotes biofilm formation, but each protein suppresses the expression of the
other. The molecular details can be found in the original paper. The focus here is
simply on the statistical properties of the phase-shifting processes, which are quite
different in the two directions.

The B. subtilis motile state is memory-less, in the sense that once initiated,
there is a constant probability of switching to the chained state at each subsequent
cell division. Letting this probability be p, the probability of switching after the first
cell division is p, after the second division is (1 − p)p, and after the nth division is
(1−p)np. This is an exponential (roughly L-shaped) distribution, with the mean (and
standard deviation) of the number of generations to switching both equal to 1/p,
in this case ∼ 81 cell divisions. Mechanistically, the stochastic switching appears to
be due to rare random fluctuations of the concentrations of proteins underlying the
double-negative feedback loop, allowing the previously silenced proteins to escape
suppression. Notably, although the distribution of switching times suggests random-
ness at the population level, the behavior of closely related cells (e.g., sister cells) is
correlated, owing to shared effects inherited from the maternal cell (Kaufmann et
al. 2007; see Chapter 9).

The distribution of switching times for B. subtilis chains is quite different, being
approximately normal (bell-shaped), with a mean of ∼ 8 cell divisions, implying a
tight degree of regulation. However, the underlying molecular mechanism for chain
termination is again fairly simple – upon chain initiation, there is a substantial pulse
of production of material involved in cell adhesion, which is then diluted over subse-
quent divisions until a minimum threshold is reached. Taken together, these results
illustrate remarkably simple molecular paths to dramatic developmental changes –
stochastic molecular switches influencing alternative master regulators for flagellar
production and cell adhesion.

One of the key evolutionary questions concerning the dynamics of switching
behavior concerns the relative longevities of the alternative phase states and the de-
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gree to which natural selection molds them in relationship to the scale of temporal
variation in environmental conditions favoring the alternative states. Not surpris-
ingly, inspired by the frequent assumption that all aspects of biodiversity must be
a product of natural selection, a considerable amount of attention has been given
to the idea that bistability is an adaptively evolved “bet-hedging” strategy enabling
individual genotypes to maximize their long-term fitness without resorting to po-
tentially costly mechanisms for short-term physiological acclimation (Kussell and
Leibler 2005; Smits et al. 2006; Veening et al. 2008; Wei et al. 2014; Norman et
al. 2015). For reasons of tractability, most of the theoretical work has focused on
simple systems with just two discrete environments, each lasting for a time period
in excess of cell generation lengths, and with two discrete phenotypes, each better
adapted to an alternative environment.

In a temporally variable environment, the genotype with the highest long-
term exponential growth rate will be favored, and for the simple two-state / two-
environment model, the optimal average random phenotypic switching time is equal
to the average of the periods between shifts between the two environmental states,
provided there are equally large (but opposite in sign) selective pressures on the two
alternative phenotypes in the alternative environments (Thattai and van Oudenaar-
den 2004; Kussell et al. 2005; Salathé et al. 2009; Gaál et al. 2010). On the other
hand, if the selection differential between the two environments is sufficiently large,
stochastic switching can be disfavored, as the monomorphic genotype favored in the
environment with large effects can overwhelm the smaller, short-lived disadvantage
in the opposite environment.

Some aspects of this model have been explored with an experimental evaluation
of a system involving two alternative growth phenotypes in the yeast S. cerevisiae
(Acar et al. 2008). Here, strains were engineered to switch between two physiological
states that yielded different growth rates in two alternative environments. The strain
that rapidly shifted from one state to the other experienced an early advantage
whenever the environment shifted, as it quickly produced progeny adapted in the
changed environment. However, as the duration between environmental shifts was
lengthened, the slow-shifting variant gained an advantage, owing to its reduced
production of the maladapted type.

Although somewhat contrived, these results show that the long-term advantage
of phenotypic switching depends on the temporal dynamics of both environmental
change and phenotypic response. However, it is prudent to consider that most
environmental variables are continuous in nature, and can vary on both within- and
between-generation time scales, as well as across spatial scales, and these kinds of
alternative scenarios can lead to rather different expectations (Lynch and Gabriel
1987). Thus, without direct empirical evidence, there is no justification for assuming
that all instances of phenotypic polymorphisms reflect adaptive fine-tuning.

Finally, in all of the preceding discussion, it has been assumed that phenotypic
switching is an intrinsic feature of a cellular network, occurring without regard to
the current environmental state. However, using environmental cues, organisms
can, in principle, reinforce various phenotypic outcomes. This might happen, for
example, through appropriate epigenetic modifications such as DNA methylation
and/or histone modifications if these somehow encouraged individuals expressing a
particular phenotype to produce offspring with an elevated frequency of the same
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phenotype (Xue and Leibler 2016). Provided that the individuals with inappropriate
phenotypes are removed by selection, such a system can then lead to a form of trans-
generational acclimation that superficially appears like learning or the inheritance
of acquired characteristics. Such transient shifts in mean phenotype without any
underlying genetic change will resort back to an alternative phenotype distribution
upon environmental change (see Foundations 9.5).

Summary

• Unicellular organisms respond to external environmental stimuli through the use
of signal-transduction (ST) pathways that relay information from the cell surface
to intracellular effectors, such as transcription factors. In most species, dozens
to hundreds of such systems are specialized to different environmental indicators.
In bacteria, such information relay systems often involve just two proteins – an
external sensor and a response regulator.

• ST systems are modular in nature, being based on several several small mo-
tifs that specify proper communication between sensor and regulator proteins
to the exclusion of members of other parallel pathways. The vast majority of
such systems operate via additions and removals of phosphoryl groups on the
participating proteins.

• Owing to the simplicity of these communication systems, rewiring of ST pathways
is readily accomplished by changes in just a few key amino acids. Although
this opens up opportunities for the establishment of novel signaling pathways
following gene duplication, it also promotes the neutral drift of the recognition
vocabulary in the absence of selection for altered functions.

• Despite the fact that the individual proteins driving ST systems operate as con-
ventional Michaelis-Menten enzymes, the pathways through which they operate
are often structured in such a way as to potentially generate very steep responses
to external ligand concentrations. In some cases, the response approaches switch-
like behavior wherein the downstream target is essentially 100% on or off when
the ligand concentration is above vs. below the threshold value.

• The continuous operation of opposing phosphorylation/dephosphorylation reac-
tions at the heart of ST systems imposes a substantial energetic cost of processing
and transmitting information, even in a constant environment.

• Owing to fluctuations in the arrival and binding of external signals to cell-surface
receptors, environmental sensing is also an inherently noisy process. Noise buffer-
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ing is facilitated by increasing the numbers of receptors and setting the binding
/ unbinding kinetics to levels that allow the cell to repeatedly make indepen-
dent measures of the degree of receptor binding at rates that exceed the internal
cellular response.

• Eukaryotic ST systems tend to be much more complicated than those in bacteria,
commonly with expansions to cascades of multiple intermediate steps, use of mul-
tiple phosphosites per communicating molecule, and kinases and phosphatases
cross-talking with multiple interacting partners. It remains unclear whether this
complexity enhances the speed, efficiency, or accuracy of environmental assess-
ment, and whether differences between prokaryotic vs. eukaryotic ST systems
have been driven by adaptive forces.

• Chemotaxis provides a rapid mechanism for adjusting the direction of bacterial
motility in response to environmental gradients. These systems, which vary in
structure among species, also often have a simple built-in feedback mechanisms
for adjusting sensitivity to the prevailing environmental state, much like the
visual systems of metazoans adjust to different light levels.

• The structure of ST systems is such that the addition of positive feedback loops
(or pairs of negative feedbacks) can give rise to bistable responses to external
ligand concentrations. By this means, genetically uniform populations can gen-
erate dimorphic populations of cells, potentially enhancing long-term genotypic
fitness in environments presenting certain levels of variation, but also yielding
maladaptive responses in inappropriate environments.
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Foundations 22.1. Behavior of a monocycling system. A key issue with respect
to an interconvertible enzyme (I) is the degree of activity expected under various con-
ditions. The total concentration of the enzyme [IT] partitions into subsets of active and
inactive molecules, [Ia] and [Ii], to a degree that depends on the relative concentrations
of the active forms of converter enzymes (denoted F and R, respectively, for forward
and reverse reactions). The fractions of active vs. inactive converter enzymes depend
in turn on the concentrations of their ligands and their affinities for them. Because
the two converter enzymes push the interconvertible enzyme in opposite directions,
the relative concentrations of their active forms dictate the level of activity of enzyme
I.

Here, we consider the steady-state situation in which the concentrations of both
converter enzymes and their ligands are kept constant by ambient cellular conditions.
Initially, we further assume that the fractions of both converter enzymes tied up with
the interconvertible enzyme are negligible, which requires that the latter not be at a
saturating level. Under these conditions (first-order rate kinetics), the active fractions
of both converting enzymes will reach steady-state levels independent of the amount of
enzyme I, and determined only by the rates of association and dissociation with their
ligands. Using the terms defined in Figure 22.4, for the forward enzyme, a steady state
requires that the rate of production of the active (a) enzyme from inactive (i) enzyme
equals the flux in the opposite direction (resulting from the deactivation of Fa),

ka,F[Fi][SF ] = kd,F[Fa]. (22.1.1)

Noting that the total concentration of forward enzyme in the system is

[FT] = [Fi] + [Fa], (22.1.2)

solving these two equations leads to the steady-state concentration of the active for-
ward enzyme

[Fa] =
[FT][SF]

kD,F + [SF]
, (22.1.3a)

where kD,F = kd,F/ka,F is the dissociation constant of enzyme F. Likewise, the equi-
librium concentration of the active form of the reverse enzyme is

[Ra] =
[RT][SR]

kD,R + [SR]
. (22.1.3b)

Provided the concentrations of the converter enzymes are at steady state, the
alternative forms of the central enzyme I will also attain steady state. This occurs when
the rate of production of active from inactive I equals the rate in the opposite direction.
Using the familiar Michaelis-Menten formulations (Chapter 19), these forward and
reverse reaction rates can be written as

VF =
kcat,F[Fa][Ii]

kS,F + [Ii]
, (22.1.4a)

and

VR =
kcat,R[Ra][Ia]

kS,R + [Ia]
. (22.1.4b)

Letting the total concentration of interconvertible enzyme in the system be

[IT] = [Ii] + [Ia], (22.1.5a)
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the quantity of interest is the fraction of molecules that are in the active state,

I∗ = [Ia]/[IT]. (22.1.5b)

The general solution can be obtained by setting Equations 22.1.4a,b equal to each
other, letting [Ii] = [IT]− [Ia], and solving for the level of [Ia] that satisfies the equality.

As mentioned below, the full solution is quite complicated, but as pointed out
by Stadtman and Chock (1977) and Shacter-Noiman et al. (1983), provided the total
amount of enzyme I in the system is small relative to the half-saturation constants
in Equations 22.1.4a,b (nonsaturating conditions), the concentrations of I in the de-
nominators of these equations can be ignored, and this leads to an expression of the
form

I∗ =
βC

1 + βC
, (22.1.6)

where

β =
κF[FT]

κR[RT]
(22.1.7a)

is the ratio of kinetic potentials of the forward and reverse converter enzymes, with
κx = kcat,x/kS,x being the specificity constant of enzyme x (see Foundations 19.1), and

C =
[SF](kD,R + [SR])

[SR](kD,F + [SF])
(22.1.7b)

is the ratio of degrees of saturation of the input reactions (see Equations 22.1.3a,b).
Although Equation 22.1.6 has a simple hyperbolic form, the underlying function is
quite complex, as it actually depends on ten different parameters (two each of the
kcat, kS, and kD terms, and the concentrations of the two converter enzymes and
their input ligands). Equation 22.3 in the main text gives an expression equivalent
to Equation 22.1.6 in terms of the active concentrations of the forward and reverse
enzymes.

Several significant points are revealed by Equation 22.1.6. First, for this case
of low overall concentration of I, I∗ is independent of the total concentration [IT ].
Second, as in the case of simple Michaelis-Menten kinetics, I∗ is a hyperbolic function,
in this case of C. Although the latter is itself a complex function, inspection shows a
hyperbolic relationship with either ligand concentration. Third, although I∗ → 1 as
(βC) → ∞, because the relative concentrations of active enzymes are limited by the
properties of the system (the total enzyme concentrations, total ligand concentrations,
and the dissociation constants), there is an upper bound to βC. Thus, the maximum
fractional activity of the central enzyme is generally < 1.0 (Figure 22.5, upper panel).

Finally, a more general expression allowing for any concentration of I was derived
by Goldbeter and Koshland (1981). In this case, the solution does depend on [IT],
bringing the total number of relevant parameters to eleven, but can be written as a
function of three composite parameters,

I∗ =
(α− 1)− (k∗F + αk∗R) +

√
[(α− 1)− (k∗F + αk∗R)]2 + 4α(α− 1)k∗R

2α
, (22.1.8)

where α = (kcat,F[Fa])/(kcat,R[Ra]), k∗F = kS,F/[IT], k∗R = kS,R/[IT], and [Fa] and [Ra]
are defined by Equations 22.1.3a,b. Contrary to the limiting situation in which [IT] is
low, the relationship of I∗ is no longer a simple hyperbola, as discussed in the main
text (Figure 22.5, lower panel).

Additional types of systems, including those with inhibitor interactions and with
linked (multicyclic) cycles, are explored in Chock and Stadtman (1977), Stadtman and
Chock (1977), and Goldbeter and Koshland (1984). Not surprisingly, these exhibit
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even richer behavior than those noted above. For the case of bacterial two-component
systems, where the kinase often has a dual function as the phosphatase (the reverse
converter enzyme in the above scheme), expressions similar in form to Equation 22.1.8
have been developed by Batchelor and Goulian (2003) and Rowland and Deeds (2014).
An excellent overview of all of these models, and the logic underlying them, is provided
by Qian (2007). Malaguti and ten Wolde (2021) extend things to time-varying signal
concentrations.

Foundations 22.2. Accuracy of environmental sensing. A successful sensing
system requires that the receptors be capable of assaying the current environmental
state accurately enough to transmit a reliable signal to the downstream responders
essential to elicit appropriate changes in cell behavior. Here, we consider the degree
to which a single molecular receptor at the cell surface can assess the concentration of
a ligand in the surrounding environment. The initial assumption is that the fractional
time during which the receptor is bound to the external ligand (p) provides the best
information that the cell can utilize for environmental prediction. As will be seen
below, however, this is by no means the only possible approach to the problem.

At any single point in time, the receptor is either occupied or not, so a single snap-
shot assessment provides little information. Over time, however, as ligand molecules
become unbound, the receptor can make repeated assays of the environment, so that
the average occupancy during a particular period becomes an estimate of p. As a
measure of accuracy, we utilize the coefficient of variation (CV), which equals the ratio
of the standard deviation (σx) to the mean (µx) of repeated measures of a variable.
Because it is easier to work with measures of variance, which is the square of the
standard deviation, the derivations to follow will be based on the squared coefficient
of variation, σ2

x/µ
2
x.

It is assumed here that on the time scale of environmental assessment, the cell
resides in a homogeneous environment with constant ligand concentration (c0), so we
are obtaining a pure measurement of environmental sensitivity based on the proper-
ties of the receptor molecule and its ligand molecule. If the environment is variable
within the time-frame of environmental assessment, the variance of ligand concentra-
tion would need to be incorporated into the measure of noise derived below. The
following derivations are based on the first presentation of the problem by Berg and
Purcell (1977) and subsequent refinements by Kaizu et al. (2014). Some uncertainties
about the precise nature of the final formulation are addressed in an excellent overview
by Aquino et al. (2016).

To describe the temporal behavior of receptor occupancy, consider the stochastic
differential equation

dΓt

dt
= konc0(1− Γt)− koffΓt + εt, (22.2.1)

where Γt denotes the occupancy (0 or 1) of a single receptor at time point t, kon is
the rate of ligand binding to an unbound receptor (per unit of external concentration,
c0), koff is the rate of dissociation of a ligand molecule from a bound receptor, and εt
is a stochastic variable with mean zero. By setting the derivative to zero and solving,
the equilibrium probability of occupancy is found to be

Γ = p =
konc0

konc0 + koff
=

c0
c0 + kD

, (22.2.2)

where kD = koff/kon.

Although the cell perceives the environment through the act of ligand binding,
the ultimate goal of environmental sensing is to obtain an estimate of the ligand
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concentration (c) that closely approximates the true concentration (c0). This requires
an estimate of the variance among sample estimates of c0 inferred from the cell’s
readout Γ. To obtain this, we start with a general rule from statistics that the variance
of a dependent variable is equal to the variance of a causal variable times the squared
derivative of the first with respect to the second (Lynch and Walsh 1998, Appendix
A), which in this case implies,

σ2
Γ = (∂p/∂c)2 · σ2

c . (22.2.3)

Rearranging and dividing by c20 yields our desired measure of accuracy, the squared
coefficient of variation of inferred concentration,

σ2
c

c20
=

1

c20
· σ2

Γ

(∂p/∂c)2
. (22.2.4)

From Equation 22.2.2, the partial derivative evaluated at c0 is

∂p

∂c
=

kD

(c0 + kD)2
, (22.2.5)

and substitution into Equation 22.2.4, after some rearrangement, leads to

σ2
c

c20
=

c20
p4k2

D

· σ2
Γ. (22.2.6)

The final step requires an expression for the variance in the mean occupancy σ2
Γ

over some period of time T of continuous assessment, as this ultimately the degree
of accuracy of overall environmental assessment. This is complicated by the fact that
the realized Γ at any one particular time is not independent of that in adjacent time
periods, owing to the time spans between ligand binding and release. Taking these
autocorrelations into consideration, Berg and Purcell (1977) showed that

σ2
Γ =

2p(1− p)2

Tkoff
. (22.2.7a)

Noting from Equation 22.2.2 that

konc0(1− p) = koffp,

Equation 22.2.7a can be equivalently written as

σ2
Γ =

2p2(1− p)
Tkon

c0. (22.2.7b)

Finally, substituting Equation 22.2.7b into 22.2.6, again with some downstream
rearrangement, leads to a remarkably simple expression

σ2
c

c20
=

2

pTkoff
=

2

(1− p)Tkonc0
. (22.2.8)

The accuracy of assessment increases (i.e., σ2
c/c

2
0 decreases) with increasing time over

which the cell integrates environmental information, and also with increasing koff. The
latter feature arises because the inverse of koff is equal to the average release time of
ligands, which means that higher koff allows the receptor to make more evaluations of
the environment.
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There are at least two other ways to express the accuracy. First, the average time
between consecutive ligand-binding events is equal to the sum of the mean times for
the length of binding to an occupied receptor and that of the time for an unoccupied
receptor to accept another ligand, each of which is the reciprocal of the respective rate,

τb =
1

koff
+

1

konc0
. (22.2.9)

Noting that the mean number of expected bindings in interval T is N = T/τb, substi-
tution of T = Nτb and Equation 22.2.2 into 22.2.8 leads to

σ2
c

c20
=

2

N
, (22.2.10)

showing that the squared CV of the cell’s estimate of c0 is inversely proportional to
the expected number of molecules bound during the assessment period (which itself is
a function of time and ligand concentration).

Second, kon is the inverse of the mean time to binding of an unoccupied receptor
(per unit ligand concentration), which in turn is equal to the sum of expected times
for particles to diffuse to the receptor (ke) and of binding upon contact (k+),

kon =

(
1

ke
+

1

k+

)−1

=
kek+

ke + k+
. (22.2.11)

Substituting Equation 22.2.11 into 22.2.8 yields

σ2
c

c20
=

2

Tc0(1− p)

(
1

ke
+

1

k+

)
. (22.2.12)

Assuming that the receptor binding site can be approximated as disc of radius rs on
the cell surface, the encounter rate (per unit concentration) by diffusion is

ke = 4Drs, (22.2.13)

where D is the diffusion constant for the ligand. Berg and Purcell (1977) assumed the
case of diffusion limitation, such that ke � k+, which reduces Equation 22.2.12 to

σ2
c

c20
=

1

2Drsc0(1− p)T
. (22.2.14)

To gain more quantitative insight into the accuracy of monitoring as inferred by
Equation 22.2.14, let D = 10−5 cm2/sec, which closely approximates true values for
single amino acids (with cations and anions having values only ∼ 2× higher; Chapter
7). Estimates of rs for chemoreceptors are sparse, but can be inferred to be on the
order of 2 nm (= 2 × 10−7 cm) given that the total area of receptor arrays in a wide
range of bacteria implies an area/receptor of ∼ 100 nm2 with most of the array space
being empty (Briegel et al. 2009). Supposing the dissociation constant kD = koff/kon is
such that p ' 0.5 (Equation 22.2.2), and a ligand concentration of c0 = 1µM = 6×1014

molecules/cm3, the coefficient of variation of measurement then becomes

σc
c0
'
√

1

1000T

where the units of T are in seconds. Thus, monitoring a constant environment for just
ten seconds is sufficient to reduce the level of estimation noise to 0.01 (i.e., a standard
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deviation of the inferred concentration just 1% of the true value). Assuming the same
p, with a 1000-fold lower concentration (c0 = 1 nM), the level of uncertainty will be

increased by a factor of
√

1000 ' 32, and to achieve a level of accuracy of 0.01, T has
to be 1000-fold higher.

A broad overview of the biophysical constraints associated with other modes
of environmental sensing (e.g., mechanoreception, vision, and hearing, all of which
are exploited by metazoans) is given in Martens et al. (2015), who demonstrate that
intrinsic limits associated with the scale of environmental noise and signal transmission
restrict the utility of mechanosensing in an open-water environment to eukaryote-sized
cells.
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