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With knowledge on rates of mutation, recombination, and random genetic drift in
hand, we now consider how the magnitudes of these population-genetic features
dictate the paths that are open vs. closed to evolutionary exploitation in various
phylogenetic lineages. Because historical contingencies exist throughout the Tree
of Life, we cannot expect to derive from first principles the evolutionary source of
every molecular detail of cellular diversification. We can, however, use established
theory to address more general issues, such as the degree of attainable molecular
refinement, rates of transition from one state to another, and the degree to which
nonadaptive processes (mutation and random genetic drift) contribute to phyloge-
netic diversification.

Much of the field of evolutionary theory is concerned with the mechanisms
maintaining genetic variation within populations, as this ultimately dictates various
aspects of the short-term response to selection (Charlesworth and Charlesworth
2010; Walsh and Lynch 2018). Here, however, we are primarily concerned with
long-term patterns of phylogenetic diversification, with a focus on mean phenotypes.
This still requires knowledge of the principles of population genetics, as evolutionary
divergence is ultimately a manifestation of the accrual of genetic modifications at
the population level. All evolutionary change initiates as a transient phase of genetic
polymorphism, during which mutant alleles navigate the rough sea of random genetic
drift, often being evaluated on diverse genetic backgrounds, with some paths being
more accessible to natural selection than others.

The primary goals of this most technical of chapters is to summarize some of the
more general challenges to understanding how evolutionary change is accomplished
and to endow the reader with an appreciation for why the population-genetic de-
tails matter. With a specific focus on the ways in which selection acts to promote
novel adaptive changes, emphasis will be placed on how the efficiency of selection is
compromised or enhanced in different population-genetic environments, sometimes
in counter-intuitive ways. Special attention will be given to the ways in which
evolutionary rates and outcomes are expected to vary with the effective sizes of
populations (Ne).

Most of the theory presented here will be discussed in a generic way, focusing
for example on a mutation with selective advantage or disadvantage s, with no
connection to the actual underlying trait(s). Such an approach is a necessary prelude
to more explicit exploration of particular traits where genotypes can be directly
connected to phenotypes and then to fitness. Specific examples to be presented in
later chapters include the evolution of protein-protein interfaces, the coevolution of
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transcription factors and their binding sites, and the evolution of maximum growth-
rate potential. Although the rudimentary technical level of presentation here may
be disappointing to high-level theoreticians, the goal is not to overwhelm the reader
with a litany of equations and formal derivations (some of which can be found in the
Foundations sections), but to facilitate understanding as to how population-genetic
theory can transform comparative cell biology into evolutionary cell biology.

The Perils of the Adaptive Paradigm

Ever since Darwin, most discussions with any connection to evolutionary thought
have started with the implicit assumption that all organismal traits are products
of natural selection. Under this extreme view, the genetic details are irrelevant,
as it is believed that natural selection is capable of finding the optimal solution to
any environmental challenge, extinction being the alternative. Such logic underlies
virtually every study in the field of evolutionary ecology. Closer to the subject
material herein, a massive number of papers in cell biology end with a speculative
paragraph on why the trait being studied (and its sometimes arcane structure) must
have been refined to its current state by selective forces, almost always in the absence
of any direct evidence or even an awareness that such evidence ought to be sought.

An appreciation for the power of natural selection is one of the great advances
of the life sciences over the past century. However, problems arise when the wand
of natural selection is deemed to be the only mechanism relevant to evolutionary
change, as this eliminates any hope for broader understanding of evolutionary pro-
cesses, and often leads to false narratives. Starting with the conclusion that the
phenotype under investigation is a necessary product of natural selection, the only
remaining challenge is to identify the actual agent of selection. If one hypothesis
fails, one moves on to another possibility, but always with unwavering certainty
that selection must somehow be involved. Many biologists have spent entire careers
wandering down such paths in search of an adaptive explanation for a particular
biological feature, and sometimes never finding it.

This is not to say that optimization thinking has completely mislead us with
respect to the evolution of alternative behavioral and/or life-history strategies, and
theory certainly explains how natural selection is often able to bring most pheno-
types within the vicinity of adaptive peaks (Fisher 1930; Rice et al. 2015). However,
as touched upon in Chapter 4, the evolutionary outcomes that are achievable by
natural selection depend critically on levels of mutation, drift, and recombination.
Moreover, owing to the stochastic nature of these processes, even under constant
selective pressures, the phenotypic states of populations are expected to wander over
time. Finally, depending on the bias and granularity of mutational effects, the most
common phenotype need not even be the optimum for a given environment.

To begin to explore these ideas, this chapter will close with an overview of the
concept of long-term steady-state distributions of mean phenotypes. This will also
provide a more formal analysis of the drift-barrier hypothesis, introduced in the
previous chapter in the context of mutation-rate evolution, demonstrating the con-
ditions under which traits are expected to exhibit gradients in performance scaling



EVOLUTIONARY POPULATION GENETICS 3

with Ne. The points being made here are not just arcane technical nuances. As
will unfold in subsequent chapters focused on particular cellular traits, owing to the
population-genetic and molecular features of biology, many aspects of evolution at
the cellular level are best understood not by invoking the all-powerful guiding hand
of natural selection, but by appreciating the factors that limit the reach of selection.

The Fitness Effects of New Mutations

Before proceeding with the theory, an overview of the fitness effects of mutations
is necessary, as this defines the landscape and potential granularity of evolutionary
change accessible to natural selection. As pointed out in Chapter 4, mutations with
an absolute selective advantage/disadvantage (s) much smaller than the reciprocal
of the effective population size (1/Ne) are essentially invisible to the eyes of natural
selection. Thus, for random genetic drift to impose significantly different barriers
to the evolution of a trait in different lineages, there must be a substantial pool
of mutations with small enough deleterious effects that they can drift to fixation
in species with small but not large Ne. This process will be further facilitated if
mutations are biased in the negative direction. As outlined below, numerous lines
of evidence are consistent with both conditions.

First, studies of serially bottlenecked mutation-accumulation (MA) lines across
diverse species consistently reveal a slow per-generation decline in growth rate and
other fitness traits (Keightley and Eyre-Walker 1999; Lynch et al. 1999; Baer et al.
2007; Katju and Bergthorsson 2019). Such experiments start with a set of isogenic
lines, which are then maintained for large numbers of generations by propagation
of just one (clone or selfer) or two (full-sib) individuals per generation. With an
Ne this small, natural selection is incapable of promoting or removing individual
mutations with fitness effects < 25% in these experiments, so the data are in full
accord with a strong bias of mutations towards deleterious effects. Furthermore,
statistical inferences based on the distribution of MA-line performances imply highly
skewed distributions of fitness effects. The modes for such distributions are often
indistinguishable from zero, with the bulk of mutations having absolute effects < 1%

(almost all negative), although mean deleterious effects can sometimes be as high
as 1 to 10% owing to the presence of rare mutations with large negative effects
(Keightley 1994; Robert et al. 2018; Böndel et al. 2019).

Second, indirect inferences derived from allele-frequency distributions in natural
populations of diverse multicellular species commonly suggest that 10 to 50% of
mutations have deleterious effects smaller than 10−5, with the inferred distribution
sometimes being bimodal, but always with one mode being near 0.0 (Keightley and
Eyre-Walker 2007; Bataillon and Bailey 2014; Huber et al. 2015; Kim et al. 2017;
Lynch et al. 2017; Booker and Keightley 2018; Johri et al. 2020). Because many
of these studies focus only on the nonsynonymous (amino-acid substitution) sites
in protein-coding genes, the full distributions of effects (which would include the
often much more numerous synonymous sites, introns, and intergenic DNA) can be
expected to be even more skewed towards near-zero values. Substantial evidence
also supports the idea that even silent (synonymous) sites in protein-coding genes
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are subject to weak selection for usage of particular nucleotides, such that the scaled
strength of selection (ratio of the power of selection relative to drift) favoring G/C
content is typically in the range of Nes = 0.1 to 1.0, i.e., on the edge of the domain
of effective neutrality (Long et al. 2017).

Third, although the preceding inferences are based on indirect extrapolations
from statistical distributions, the costs of some kinds of mutations can be derived
from first principles. For example, from a knowledge of the total energy budget of
a cell and the biosynthetic costs of its building blocks, it is possible to estimate the
fractional reduction in cell growth rates resulting from various kinds of mutations
(Chapter 17; Foundations 5.1). Bioenergetic considerations of the costs of small
nucleotide insertions, which typically comprise ∼ 10% of de novo mutations (Sung
et al. 2016), imply fractional reductions in fitness far below 10−5 (Lynch and Mari-
nov 2015). Likewise, from both the standpoint of biosynthetic expenditures and
elemental (e.g., C, N, or S) composition (Chapter 18), the costs of using alternative
amino acids or nucleotides imply that s associated with such substitutions is gen-
erally � 10−5 unless there are additional functional consequences. Broad surveys
of single amino-acid substitutions in a range of proteins generally imply that most
such changes influence protein performance by < 1%, with a large class indistin-
guishable from zero, and a secondary peak with very substantial effects (Chapter
12). Single-residue changes in protein-protein interfaces or DNA binding sites are
also expected to have small effects (Chapters 13 and 21). This diverse set of ob-
servations makes clear that there are large fractions of deleterious mutations with
fitness effects < 10−5 in all species.

Drawing from these observations, as well as other considerations regarding
genome content outlined in Foundations 5.1, the genome-wide distribution of fit-
ness effects (DFE) of new mutations is expected to take on different forms in large-
and small-Ne species (Figure 5.1). In the former, prokaryotes in particular, > 95%

of the genome consists of coding DNA, of which ∼ 75% are amino-acid substitution
sites. A small fraction of silent-site mutations that retain identical nucleotides but
alter their strand associations (e.g., A:T vs. T:A) may be absolutely neutral, but
otherwise the lower bound of the fitness effect of a silent-site mutation is based on
the differential cost of (C+G) vs. (A+T) nucleotide pairs relative to the total cost
of building a cell (in ATP equivalents). An expected central peak in the idealized
prokaryotic DFE in Figure 5.1 is associated with the substitution of amino acids
with biosynthetic costs at sites that are otherwise insensitive to amino-acid identity,
whereas the potential lower peak to the right is associated with amino-acid altering
mutations with additional functional effects on protein performance.

The form of the DFE is expected to shift in eukaryotic species, owing to the
dramatic expansion of genome content. Greater than 95% of nucleotide sites are
noncoding and nonfunctional (with mutational effects limited to small differential
biosynthetic costs of nucleotides) in many multicellular species, with the genome
structures of unicellular eukaryotes typically being intermediate between this ex-
treme and that of prokaryotes (Lynch 2007). Combined with a several order-of-
magnitude increase in the cost of construction of large eukaryotic cells relative to
prokaryotes, which dilutes the relative biosynthetic costs of individual mutations
(Foundations 5.1), this shifts the DFE to the left and creates a more L-shaped
form, owing to the elevated number of nonfunctional sites dominating the overall
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distribution (Figure 5.1).

Taking all of these observations into consideration, the existence of large pools
of mutations with deleterious effects small enough to allow fixation in some lineages
but large enough to ensure removal by selection in others is not in doubt. This
supports the contention that traits under identical selection pressures in species
with different Ne will evolve different mean phenotypes, as discussed in the context
of mutation-rate evolution in the previous chapter. Nonetheless, significant caveats
remain.

First, statistical and empirical limitations prevent us from knowing with cer-
tainty the full form of the distribution of mutations of small effects, e.g., the fraction
of mutations with effects < 10−5, < 10−6, < 10−7, < 10−8, etc. Thus, the exact form
of these regions of the hypothetical DFEs presented in Figure 5.1 should not be
taken too seriously. This is a significant concern. As we know that Ne ranges from
∼ 104 to 109 (Chapter 4), these are the mutations that can be utilized / purged in
some lineages but not in others. In addition, and most importantly, although most
of the observations noted above address the general fitness properties of random
mutations, they are disconnected from the actual cellular traits that we will wish
to eventually explore. Further genetic dissection is essential to inform us as to the
precise molecular targets and phenotypic effects of fitness-altering mutations.

The Classical Model of Sequential Fixation

A common conceptual starting point for thinking about the temporal dynamics of
adaptive evolution invokes the case in which a trait is under persistent directional
selection, with the pace of evolution being slow enough that each consecutive adap-
tive mutation is fixed before the next beneficial mutation destined to fix arises.
In principle, such a scenario can exist if the supply of adaptive mutations is quite
limited owing to either a relatively small population size, a low mutation rate to
beneficial variants, or both. In this limiting situation, recombination is irrelevant be-
cause no two loci are ever simultaneously segregating polymorphisms at meaningful
frequencies.

This sequential model of molecular evolution (sometimes also called the strong
selection/weak mutation model or the origin-fixation model; Gillespie 1983; McCan-
dlish and Stoltzfus 2014) may only rarely represent reality as it assumes a constant
march towards higher fitness. Nonetheless, it serves as a useful heuristic for thinking
about several issues concerning the limits to rates of adaptive evolution and how
they might scale with population size.

Under this model, the long-term rate of adaptation is equal to the product of
three terms: the rate of introduction of beneficial mutations, the fixation probability
of such mutations, and their fitness effects. 1) The population-wide rate of origin
of new beneficial mutations is NUb for haploids and 2NUb for diploids, where Ub is
the mutation rate (per generation) to beneficial alleles. Depending on the focus, Ub
can represent a single nucleotide site, a single gene, or an entire haploid genome.
2) The probability of fixation of a new beneficial mutation is ' 2s(Ne/N), where N
and Ne are the actual and effective population sizes, and s is the selective advantage
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relative to the ancestral allele (Chapter 4). As Ne/N is almost always less than one,
this ratio can be thought of as the efficiency with which selection promotes new
beneficial mutations, with the maximum fixation rate being 2s. 3) The increase in
fitness per fixation is s for haploids, but 2s for diploids. (Note that for diploids, it
is assumed here that mutational effects are additive, with heterozygotes having a
fitness advantage 1 + s intermediate to that for the two homozygotes, 1 and 1 + 2s).

The expected rate of evolution in terms of fixation numbers is the product of
the first two terms,

re = NUb · 2s(Ne/N) = 2NeUbs, (5.1a)

for haploids, and twice this for diploids. The increase in fitness is then equal to

∆W = re · s = 2NeUbs
2, (5.1b)

for haploids, and 4× this for diploids. (Note that this difference between haploids
and diploids is merely a function of how the fitness effects are annotated in diploids.
If s is redefined so that mutant heterozygotes and homozygotes have fitnesses 1+(s/2)

and 1 + s, respectively, then Equations 5.1a,b hold for diploids).
This model for the speed limit to the rate of adaptation is idealized in many

ways, as it assumes long-term persistent selection in one direction, constant ben-
eficial mutation rates, and constant effect sizes of fixed mutations. Nonetheless,
this simple approach highlights the key roles that the individual population-genetic
parameters play in dictating the potential for evolutionary change. For example,
Equations 5.1a,b suggest that, all other things being equal, the rate of adaptive
evolution should scale linearly with the effective population size (which need not
be equivalent to the absolute population size) and with the genome-wide beneficial
mutation rate.

However, there is room for caution in interpreting expressions like Equation 5.1b.
First, the conditions under which mutations are likely to fix in a stepwise manner
are limited. Sequential fixation requires that the average time between fixations (the
inverse of re = 2NeUbs for haploids) be greater than the mean time required for each
mutation to fix, which is ' (2/s) ln(N) generations for a haploid population (Walsh
and Lynch 2018, Equation 8.4c). It then follows that for sequential fixation to be
the rule, 2NeUb must be smaller than 1/[2 ln(N)]. Because ln(N) falls in the narrow
range of 9 to 46 over a range of N = 104 to 1020, as a first-order approximation,
the sequential model will only hold if the effective number of beneficial mutations
arising per generation is NeUb < 0.01, i.e., if no more than one beneficial mutation
for the trait arises per 100 generations at the effective-population size level.

How likely is this condition to be met? Recall from Chapter 4 that the product
of 2Ne and the mutation rate per nucleotide site per generation (u) generally falls
in the range of 2Neu = 10−3 to 10−2. Multiplying 2Neu by the number of selected
sites in a chromosomal region of interest and the fraction of mutations that are
beneficial converts this quantity to 2NeUb. With a moderate-sized region of 105

fitness-relevant sites and just 0.01% of mutations being beneficial, then 2NeUb for
such a region would be in the range of 10−2 to 10−1. As this is on the edge of the
strict cutoff for the sequential model, it follows that the sequential model cannot
be assumed to be generally valid unless the fraction of beneficial mutations is very
small. These issues are evaluated in great detail in Weissman and Barton (2012),
Weissman and Hallatschek (2014), and Lynch (2020).
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The primary reason for concern with violations of the sequential model is that
simultaneously segregating mutations (both beneficial and deleterious) at different
nucleotide sites interfere with each other in the selection process, diminishing the
probabilities of fixation of the good and the purging of the bad (Campos and Wahl
2009, 2010; Frenkel et al. 2014; Pénisson et al. 2017). As new beneficial mutations
arise, their fates are determined by the fitness of the linked backgrounds in which
they appear, which will vary in large populations (Figure 4.2). Cosegregating dele-
terious mutations play a particularly prominent role in reducing the rate of adaptive
evolution, as the majority of de novo mutations are deleterious. If tightly linked
to a segregating deleterious mutation, a beneficial mutation will not experience its
full intrinsic advantage, and in some cases will be completely overshadowed by the
linked background load (Good and Desai 2014).

The central point here is that although the effects of background variation do
not alter the expectation that the rate of adaptive evolution will scale positively with
Ne, the gradient of scaling is expected to decline substantially with increasing N .
Theoretical work suggests that selective interference reduces the scaling of the rate of
adaptation from linear with N in the sequential domain to as weakly as logarithmic
in N beyond that point (Weissman and Barton 2012; Neher 2013; Weissman and
Hallatschek 2014).

Selective interference is commonly observed in long-term laboratory evolution
experiments involving microbes. For example, Figure 5.2 illustrates the trajectories
of genome-wide mutant-allele frequencies in three replicate populations of E. coli
grown in just 10 ml of medium. Over a period of 60,000 generations, these pop-
ulations experienced an average 30% increase in fitness in the culture conditions,
albeit at a diminishing rate. The norm in these kinds of experiments is for many
mutations to be simultaneously polymorphic, and more often than not, groups of
mutations increase (and sometimes decline) in a coordinated manner. As noted
earlier for asexual populations of yeast (Figure 4.9), this is a simple consequence of
the clonal nature of the experimental populations, as a single, positively selected
mutation driving to fixation sweeps along all linked “passenger” mutations (some of
which themselves have beneficial or deleterious fitness effects).

Examples can also be seen in Figure 5.2 of mutations reaching very high fre-
quencies in a short period of time, followed by a subsequent decline to 0.0 as other
more fit mutant clones take over. In one population, two major clones, each con-
taining multiple mutations, appear to reach equilibrium frequencies, with neither
going to fixation (middle panel); this may be a result of some form of frequency-
dependent selection, with each clone providing a metabolic product beneficial to the
other (Behringer et al. 2018). In another case, there is a massive accumulation of
mutations near the midpoint of the experiment (lower panel), owing to the appear-
ance of a mutator strain, which may have hitchhiked to fixation in linkage with a
beneficial mutation that it promoted.

Compensating for these constraining effects from selective interference is the
fact that a larger fraction of beneficial mutations is exploitable in larger populations.
Owing to the fact that efficient selection requires |Nes| > 1 (Chapter 4), populations
with larger Ne have access to mutations with smaller s. However, although this
expansion in the pool of available beneficial mutations will further tip the balance
in favor of higher rates of evolution in larger populations, from Equation 5.1 it can be



8 CHAPTER 5

seen that the contribution of beneficial mutations to increases in fitness scales with
the square of the selective advantage, s2. Thus, because average s is typically � 1,

broadening the window of mutational availability will have a less than linear effect
on the rate of adaptation unless the pool of beneficial mutations is very strongly
skewed towards those with small fitness effects.

Surveys of the clonal dynamics in long-term evolution experiments illustrate
these principles in a more general way (Nguyen Ba et al. 2019). Clonal competition
can lead to a “rich get richer”’ scenario, whereby currently successful clones ride a
wave to high abundance, and in doing so can more efficiently utilize additional bene-
ficial mutations arising during their clonal expansion. On the other hand, currently
low fit clones can occasionally vault their way to success via a fortuitous secondary
mutation, but only if the latter has a very high fitness effect.

With respect to the scaling of the rate of adaptation with population size, there
are still additional issues to consider. Recall from Chapter 4 that, at the interspecies
level, there is a nearly inverse relationship between Ne and the mutation rate (u).
From Equation 5.1, such a compensatory effect would yield near independence of
the rate of adaptation and Ne, although the potential expansion of the window of
exploitable mutations can modify this result.

Finally, there is the matter of time scale. The previous derivations consider the
rate of adaptive evolution on a per-generation basis. However, smaller organisms
typically have shorter generation times, which will elevate the rate of evolution on
an absolute time scale. For example, if the generation length scaled inversely with
Ne, this would render the expected rate of evolution (Equation 5.1) proportional to
N2
e on an absolute time scale. The following simple argument supports the idea of

such a generation-time effect. Recall from Figure 4.3 that across the Tree of Life, Ne
varies by about five orders of magnitude, from ∼ 104 for some vertebrates to nearly
109 for some bacteria. Generation lengths in bacteria tend to be on the order of 0.1
to 1.0 days, whereas those in vertebrates and land plants are generally on the order
of 102 to 104 days, thus spanning nearly five orders of magnitude in the opposite
direction of Ne. There can, of course, be considerable variation in generation lengths
among organisms with the same Ne, but there is a clear general negative relationship
between Ne and generation length.

Taken together, for simple adaptations involving mutations with additive effects,
the above observations point toward the potential rate of evolutionary change (per
absolute time unit) being greater for organisms with small size, short generation
times, and large Ne. However, whether the scaling of adaptive evolutionary potential
with Ne is sublinear, linear, or superlinear remains uncertain. Moreover, if both
mutation rates and generation lengths scale inversely with Ne, the two effects will
cancel out, and the scaling of rates of evolution with Ne on an absolute time scale
will follow the expectations of Equations 5.1a,b). Finally, as will be discussed is
the following section, for changes involving interactions among loci, the expected
scaling of evolutionary rates with Ne can deviate from that described above.

Before proceeding, one final point merits discussion. Although the quantity
re = 2NeUbs is a measure of the expected number of long-term fixations per unit
time under the ideal model, because mutation and fixation events are stochastic,
considerable variation is expected around this expectation. For a Poisson process,
where each rare event is independent of the others, the variance in the amount of
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long-term change among replicate populations is equal to the expectation. If, for
example, the time interval under consideration is long enough that one beneficial
mutation is expected per lineage, the probability that one event actually accrues
is just 0.368, but the probability of no fixations is also 0.368, of two is 0.182, of
three is 0.061, and of four or more is 0.021. The central point is that considerable
variation in observed rates of evolution is expected among lineages exposed to iden-
tical selection pressures, and that such dispersion should not be taken as evidence
of adaptive differentiation, of the adaptive emergence of mutators/antimutators, or
of intrinsic differences in evolutionary potential. Foundations 5.2 provides an even
more dramatic example of how divergence among populations exposed to identical
selection pressures can exceed that expected under neutral drift.

Vaulting Barriers to More Complex Adaptations

To this point, we have been assuming that the fitness effect of an allele is independent
of the genetic background on which it resides. Under this view, Equations 5.1a,b
provide the simplest possible model for the rate of adaptation by new mutations,
as prior fixations have no bearing on subsequent events. However, this assumption
can be violated for at least two reasons. First, for the case of stabilizing selection
for an intermediate optimum phenotype or directional selection up the edge of a
fitness plateau, each mutation fixation will alter the selection coefficients of future
mutations by moving the mean phenotype closer to the optimal state, reducing the
capacity for further improvement.

Second, when mutations have epistatic effects (i.e., interact in a nonadditive
fashion), the possibility exists for neutral or even deleterious mutations to become
beneficial in certain contexts (Figure 5.3). Multilocus traits exhibiting the latter
types of genetic behavior will be referred to here as complex adaptations, as the
paths for their evolution and the rapidity with which they are acquired are much
less straight-forward than under conditions of additive fitness effects. Mutations
that pave the way for an increase in fitness via secondary mutations that otherwise
would be deleterious are sometimes referred to as enabling mutations (Tóth-Petróczy
and Tawfik 2013).

One broad category of complex-trait evolution involves compensatory muta-
tions, wherein single mutations at either of two loci cause a fitness reduction, while
their joint appearance can restore or even elevate fitness beyond the ancestral state.
Such epistatic interactions play a prominent role in Wright’s (1931, 1932) shifting-
balance theory of evolution, which postulates that adaptive valleys between fitness
peaks are typically traversed in small subpopulations that facilitate drift through
a deleterious intermediate state in an effectively neutral fashion. Compensatory
mutations play important roles in protein-sequence evolution (Chapter 12), in the
composition of nucleotides in the stems of RNA molecules (Stephan and Kirby 1993;
Kondrashov et al. 2002; Kulathinal et al. 2004; Azevedo et al. 2006; DePristo et al.
2007; Breen et al. 2012; Wu et al. 2016), and in the coevolution of complexes consist-
ing of components encoded in nuclear and organelle genomes (Chapter 23). Many
other scenarios are possible for the transitions from one high fitness state to an-
other. For example, situations likely exist in which mutations that are effectively



10 CHAPTER 5

neutral in isolation yield an increase in fitness when combined, and some pathways
with multiple steps may allow the bypass of shorter but more deleterious pathways
(Figure 5.3).

As complex adaptations are expected to evolve over relatively long periods,
with many background mutations accumulating in parallel, ascertaining the molec-
ular paths of establishment from observations on evolutionary endpoints alone is
challenging. However, clear examples observed in real time do exist. For example,
in a long-term (> 40, 000 generation) evolution experiment with E. coli selected for
growth in flasks on a defined medium, the novel ability to utilize citrate as a carbon
source emerged in one of twelve cultures (Blount et al. 2008; Quandt et al. 2014).
Drawing from the historical record of evolution by resurrecting frozen samples, it
was found that a weak variant for citrate utilization arising from a promoter-region
mutation provided a potential mutational target for further refinement of the trait.
While this initial mutation was still infrequent in the population (and possibly ef-
fectively neutral), a linked mutation appearing at a second locus conveyed a much
greater ability to take up citrate, conferring a substantial increase in fitness that
drove the double mutant to fixation.

Sequential fixation vs. stochastic tunneling. Even when only two loci are in-
volved, ascertaining the population-genetic conditions under which complex adap-
tations are likely to occur brings in challenges not discussed above for the ideal
single-site model. This is because unlike the situation in which a single mutation
fixes at a rate depending only on its own initial frequency, the success of a mutation
involved in an interlocus interaction depends on the frequency of alleles at the in-
teracting locus, on the fitnesses associated with all possible multi-locus genotypes,
and on the recombination rate between the two loci.

The focus here will be on the rate of establishment of a complex adaptation,
defined to be the inverse of the expected arrival time of the ultimate multi-mutation
configuration destined to be fixed in the population. Although this excludes the
additional time required for fixation, the latter is generally considerably smaller
than the time to establishment, and ignoring it does not influence the following
conclusions.

Population size alone can dictate the kinds of evolutionary pathways that are
open to the establishment of complex traits (Figure 5.4). For populations of suf-
ficiently small size, the path toward adaptation almost always involves sequential
fixations of the contributing mutations, owing to the extreme rarity of occasions
in which multiple mutations are simultaneously segregating at key sites. This issue
was explored in the previous section for the situation in which mutational effects are
independent, but we now consider an adaptation requiring two genetic changes, the
first of which is a neutral enabling mutation (Walsh 1995; Lynch and Abegg 2010).

We first consider the conditions under which a population is constrained to
acquiring the two-site adaptation in two sequential steps. This is a function of
three factors. Assuming a first-step (neutral) mutation is destined to fixation, its
mean time to fixation is 4Ne generations in a diploid population (Kimura 1983).
Because the frequency increases from near 0.0 to 1.0, the average frequency of this
mutation during its sojourn to fixation is 0.5, and this implies the presence of an
average 0.5 · 2N = N copies during the polymorphic phase. Letting µ2 be the rate
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of second-step mutations linked to the first-step background, from the theory out-
lined above, the rate of appearance of second-step mutations destined to fix is then
µ2 · 2s(Ne/N) per mutational target per generation. The product of these three
quantities gives the approximate probability of a secondary mutation arising on
a segregating first-step mutation background (and also being destined to fix) of
4Ne ·N · µ2 · 2s(Ne/N) = 8N2

eµ2s. This shows that there is a negligible chance of ar-
rival of a successful secondary mutation before fixation of the first if Ne � (8µ2s)

−1/2.
With µ2 = 10−9 and s = 10−4, for example, the critical effective population size is
' 106. For Ne below this threshold value, selection is restricted to exploring the
fitness landscape by sequential mutational steps.

In contrast, in large populations, key secondary (and even tertiary) mutations
can arise prior to the fixation of earlier-step contributors (Figure 5.3). This raises
the possibility of the joint, simultaneous fixation of combinations of mutations as
single haplotypes without any enabling mutation having been previously common
in isolation as heterozygotes. For example, a conditionally beneficial secondary
mutation may arise in linkage with a low-frequency deleterious first-step mutation,
with the joint fixation of the double-mutation haplotype in effect rescuing the first-
step mutation otherwise destined to be lost. Such a process, often referred to as
stochastic tunneling (Komarova et al. 2003; Iwasa et al. 2004), provides a smooth
route for the establishment of complex adaptations, allowing large populations to
explore the fitness surface more broadly than possible by single-step mutations.
Most notably, stochastic tunneling allows progression through intermediate delete-
rious alleles without the population ever experiencing the transient decline in fitness
that would necessarily occur with sequential fixation (Gillespie 1984; Weinreich and
Chao 2005; Gokhale et al. 2009; Weissman et al. 2009, 2010; Lynch and Abegg
2010; Lynch 2010). This shows how deleterious mutations with conditional effects
can play a central role in evolutionary diversification.

The following analyses will focus on the domain in which stochastic tunneling
dominates, i.e., populations of moderate to very large size, as will often be the case
in single-celled organisms. However, before proceeding, it should be emphasized
that the theory explored in the following paragraphs starts with the premise that
each mutation contributing to a final adaptation arises independently of all others.
Recall from Chapter 4 that mutations sometimes arise in clusters, which means
that adaptations involving two or three, and perhaps even more, site-specific mu-
tations will occasionally arise spontaneously in a single individual on realistic time
scales. In such cases, assuming negligible recombination between these sites, the
rate of fixation of the mutant haplotype follows directly from the single-mutation
theory noted in the preceding chapter, Equations 4.1a-c, i.e., we simply inquire as
to the probability of fixation of a newly arisen beneficial mutation with the specified
haplotype, ' 2s(Ne/N).

Two-locus transitions. We start with a simple selection scenario, first explored
by Kimura (1985), in which haplotypes Ab and aB have reduced but equivalent
fitness (1 − sd) relative to AB and ab, both of which have fitnesses of 1.0 (Figure
5.3, upper left). In this case, two-step transitions between pure population states
of AB and ab render no gain in fitness, but do involve an intermediate deleterious
genotype. Initially, the two sites will be assumed to be completely linked, and µd
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and µb will denote the rate of mutation to first (potentially deleterious) and second
(potentially conditionally beneficial) step variants. (If sd = sb = 0, the intermediate
states are neutral).

As an explicit example, AB and ab might represent beneficial pairs of amino
acids involved in protein folding or stability, with Ab and aB representing nonmatch-
ing combinations. The Watson-Crick pairs in the stems of ribosomal RNAs provide
another compelling example. Although the overall stem/loop structure of rRNAs
is highly conserved across species, orthologous complementary nucleotide pairs in
stems often have different states in different species. Barring a rare double muta-
tion, such shifts require passage through an intermediate deleterious state, e.g., A:T
→ A:C → G:C. Provided the overall secondary structure is maintained, which is
presumably essential for proper ribosome assembly, rRNAs from different bacterial
species with up to 20% divergence can substitute for each other with only small
effects on fitness (Kitahara et al. 2012).

Throughout this section, we assume a large enough population size to be in
the stochastic-tunneling domain. Starting with a population in state AB, we wish
to determine the mean time for the population to reach an alternative state of
fixation at both loci, i.e., with haplotype ab. Mutation will recurrently introduce
new Ab and aB haplotypes, and provided the strength of selection exceeds that
of mutation, both the aB and Ab haplotypes will then be expected to have steady-
state frequencies of µd/sd. This condition results from the balance between the rates
of mutational input µd (from the ancestral AB haplotype) and selective removal sd
(Walsh and Lynch 2018). In a diploid population, there will be a total of 2N ·2 ·µd/sd
of these low-frequency aB and Ab haplotypes, as the 2N chromosomes each contain
two loci with expected deleterious-allele frequency µd/sd. These intermediate types
then serve as reliable substrates for secondary mutations to the ab type, which arise
at rate µb from each intermediate background. However, even though the ab type
has an advantage over its deleterious parental Ab or aB haplotype, ab mutations
fix in an essentially neutral fashion with probability 1/(2N). This follows under the
assumption that µd/sd � 1, which ensures that almost all resident haplotypes are
of type AB, which have equivalent fitness to ab. Thus, the rate of establishment of
the ab type by stochastic tunneling from AB is

re '
4Nµd
sd

· µb ·
1

2N
=

2µdµb
sd

(5.2)

(Gillespie 1984; Stephan 1996). This rate is independent of population size (provided
the conditions for selection-mutation balance, 4Nesd � 1, are met, and ignoring for
the moment any population-size dependence of the mutation rate).

Next, suppose that the secondary mutation has advantage sb > 0, such that the
fitness of the AB and ab haplotypes are 1 and 1 + sb, respectively (Figure 5.3, upper
right). Modifying Equation 5.2 to account for the fact that the fixation probability
of the double mutant is ' 2sb(Ne/N) leads to

re '
4Nµd
sd

· µb · 2sb(Ne/N) =
8Neµdµbsb

sd
. (5.3)

As in the case of selectively equivalent end states, the rate of establishment scales
with the square of the mutation rate, but now also with the strength of positive
selection scaled relative to that of drift, 4Nesb.
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Finally, consider the special situation in which first-step mutations are effectively
neutral, so that again there should be a nonzero probability of their being present at
some low frequency at the outset. Denoting this initial frequency as p0, and simply
substituting this for µd/sd in Equation 5.3 yields

re = 4Np0 · µb · 2sb(Ne/N) = 8Nep0µbsb. (5.4)

This is a potentially much higher rate of tunneling than implied by Equations 5.2 and
5.3, owing to the expectation that mutations at neutral sites will have much higher
equilibrium frequencies than deleterious mutations. If, for example, the genetic
substrate here is one particular nucleotide at a genomic site, assuming no mutational
bias, the long-term average frequency of each of the four nucleotide types is 0.25
(even a small population harboring little polymorphism will be fixed for the enabling
mutation with probability 0.25). This then yields re = 2Neµbsb, which is just half
the expectation for the single-site model, Equation 5.1a, because one of the two
potential starting nucleotides (out of four) is present at the outset at each of the
two sites. This kind of scenario would apply to the situation in which a codon
requires two changes for a transition to a more beneficial amino-acid.

What can be inferred about the likely scaling of two-site adaptations from these
results? As noted above, a key issue is that the algebraic scaling implied by the
preceding expressions is confounded by the nonindependent behavior of the biolog-
ical components. For example, as outlined in Chapter 4, there is a roughly inverse
scaling between the mutation rate per nucleotide site per generation and Ne across
the Tree of Life. Thus, treating the product of Ne and the mutation rate as an
approximate constant may provide a more realistic view of how the per-generation
rate of evolution scales with population size.

Consider, for example, Equation 5.2 for the rate of transition between two equiv-
alent fitness states via deleterious intermediates. Although this expression suggests
that the evolutionary rate scales with µdµb, independent of Ne, because both mu-
tation rates scale inversely with Ne, the expectation is that re will actually scale
inversely with N2

e , i.e., re ∝ 2/(N2
e sd). Extending this logic to Equation 5.3 for the

rate of transition to a higher fitness state through deleterious intermediates implies
an inverse scaling of re with Ne. On the other hand, Equation 5.4 for the rate of tran-
sition to a higher fitness state through neutral intermediates implies a scaling that is
independent of Ne, as in the case of the single-site model, as Neµb is approximately
constant.

The key point here is that the rate of exploitation of various kinds of evolu-
tionary pathways can depend critically on the nature of the adaptive change, on
the effective population size, and on mutation rates. Equations 5.2, 5.3, and 5.4
ignore the possible relationship of generation lengths with Ne. However, if as sug-
gested above, this is an inverse relationship, then combined with the near constancy
of Neµ, the scaling of the rate of evolution with Ne on an absolute time scale is
obtained by multiplying the scalings noted in the previous paragraph by Ne. The
rate then becomes: 1) inversely related to Ne when deleterious intermediates lead to
alternative end states with equivalent fitness (Equation 5.2); 2) independent of Ne
when deleterious intermediates lead to one end state with elevated fitness (Equa-
tion 5.3); and 3) positively related with Ne when neutral intermediates enable the
evolution of an end state with elevated fitness (Equation 5.4).



14 CHAPTER 5

Finally, recall that simultaneous mutations arise at two sites much more rapidly
than expected by chance. Denoting the mutation rate of AB to ab haplotypes
in single events as µ2, the rate of establishment of a beneficial two-locus variant
would then be identical to that defined for the single-site expression, Equation 5.1.
Provided µ2 � µbµd, the rate of this direct route would be much higher than that
expected by tunneling.

More complex scenarios. While the above analyses assume an evolutionary
path to a final adaptation through just a single intermediate step, the routes to
many molecular/cellular modifications can be more complex, potentially involving
pathways through any number of mutations, e.g., Figure 5.3 (bottom). The rates of
establishment under these alternative scenarios have been examined in some detail,
again with the primary focus on situations in which the intermediate states are
neutral or deleterious (Gokhale et al. 2009; Weissman et al. 2009; Lynch and Abegg
2010; Santiago 2015). The mathematics necessarily becomes more complex, and
simple analytical approximations have been found in only a few cases. Two of these
are considered below to illustrate how the establishment rate re scales with the
underlying features of population size, mutation rate, and selection intensity.

For the case of deleterious intermediates, suppose that all haplotypes involving 1
to d−1 mutations are equally deleterious (with fitness 1−sd), with the final mutation
conferring an advantage sb (d = 2 represents the two-step case noted above). First-
step mutations then arise from mutation-free individuals at rate 2Ndµd, but owing
to selection have an expected survivorship time of 1/sd generations, during which
period d − 2 additional intermediate step mutations must be acquired, followed by
the appearance of a final-step mutation destined to fixation. This leads to a rate of
establishment via tunneling of

re ' 4Ned!(µd/sd)
d−1µbsb (5.5)

which reduces to Equation 5.3 when d = 2. Here, we see that the rate of establishment
scales with the dth power of the mutation rate, owing to the limited opportunities for
secondary mutations during the short sojourn times of deleterious mutations. Thus,
the acquisition of a novel adaptation involving multiple, deleterious intermediate
steps is a very low probability event, potentially diminishingly so for populations
with large Ne, as assuming an inverse relationship between the mutation rate and
Ne, the expected scaling is now with N1−d

e (on a per-generation time scale). Again,
however, multinucleotide mutations can, in principle, dramatically accelerate this
process.

For the case of neutral intermediates with d mutations required for the final
adaptation (and the order of events assumed to be irrelevant), there is again the
conceptual issue of the starting conditions. The worst-case scenario is the one in
which all contributing mutations are absent at time zero, with establishment then
requiring a series of nested tunneling events. Consider first the special situation in
which d = 2 (the two-step model introduced above) and enabling neutral mutations
leading to the favorable genotype arise at rate µn per site (Figure 5.3, upper middle).
With two sites in a diploid population, 4Nµn neutral first-step mutations arise per
generation.To obtain the expected rate of tunneling in this case, we also require the
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probability that tunneling occurs within a descendant lineage of a first-step mutation
before the latter becomes lost from the population. Assuming complete linkage, this
probability is approximately

√
2µbsb(Ne/N) in large populations (Komarova et al.

2003; Iwasa et al. 2004; Weissman et al. 2009, 2010; Lynch and Abegg 2010). Thus,
the rate of establishment via tunneling becomes

re,2 ' 4Nµn
√

2µbsb(Ne/N) = 4µn
√

2µbsbNeN (5.6a)

The key observation here is that when the intermediate steps are neutral, but the
first-step mutations are initially absent from the population, the probability of tun-
neling scales positively with the square root of the product of absolute and effective
population sizes.

Now consider the case of d = 3 (with two neutral enabling mutations required
before the final adaptation is assembled with a third mutation). In this situation,
a secondary (conditionally neutral) mutation must arise on a haplotype lineage
containing the first such mutation, and before being lost by drift, the still smaller
two-mutation lineage must acquire a third mutation destined to fixation. This nested
set of events expands Equation 5.6a to

re,3 = 3N
(

2µn
√
re2/(2N)

)
= 6Nµn

√
2µn

√
2µbsb(Ne/N) (5.6b)

Note that the first term is now 6Nµn because first-step mutations can arise at three
diploid sites. The next step then initiates at either of the two remaining sites,
bringing in the additional 2µn term, with the final stage being initiated at the one
remaining site and fixing at the usual rate for a single beneficial mutation. With
d = 4, this expression expands one step further to

re,4 = 4N
(

2µn
√
re3/(2N)

)
= 8Nµn

√
3µn

√
2µn

√
2µbsb(Ne/N), (5.6c)

and so on.
These results show that with neutral intermediates, the rate of establishment

of complex adaptations can be much more rapid than expected under the naive
assumption that independently arising mutations would lead to a scaling with the
dth power of the mutation rate. Regardless of the number of sites involved with
neutral intermediates, the rate of establishment by tunneling scales with no more
than the square of the mutation rate. Again, adhering to the empirical observation of
an approximately inverse relationship between mutation rates and population size,
this implies that the expected rate of establishment of beneficial features dependent
on a constellation of new enabling mutations is nearly inversely proportional to Ne
on a per-generation time scale; and if the generation length also scales inversely
with Ne, the rate of establishment is Ne-independent. If it is further assumed that
(d − 1)-stage mutants are present at some low frequency p0 in the base population,
Equation 5.4 applies, again implying Ne-independent scaling.

Finally, it should be noted that the above examples are just a small sample of
the kinds of evolutionary pathways that can exist between two complex genotypes.
In principle, multiple pathway types may connect two presumed endpoints, includ-
ing those with mixtures of neutral and deleterious intermediates, different numbers
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of links (Figure 5.3, lower right), and so on. The kind of theory just outlined can
be used to evaluate the relative probabilities of such alternative routes, as well as
the possibility of becoming transiently trapped at points with suboptimal fitness,
and subsequently back-tracking and exploring alternative paths (McCandlish 2018).
Experimental-evolution studies with microbes are being increasingly exploited to
evaluate these issues (e.g., Lind et al. 2019; Rodrigues and Shakhnovich 2019; Zheng
et al. 2019). Although much work remains to be done, the key point here is that
complex adaptations can arise in large asexual populations (e.g., unicellular organ-
isms) much more rapidly than one might imagine under the assumption of sequential
fixation of interactive mutations.

Effects of recombination. All of the above analyses assume an absence of recom-
bination. In the sequential-fixation regime, recombination can be ignored simply
because multiple polymorphic sites are never present simultaneously. However, in
the stochastic-tunneling domain, opportunities may exist for both the recombina-
tional creation and breakdown of optimal haplotypes. Examination of this problem
with a broad class of models leads to the conclusion that recombination is likely
to have either a minor advantageous or a strong inhibitory effect on the de novo
establishment of a complex adaptation (Higgs 1998; Lynch 2010; Weissman et al.
2010; Santiago 2015).

Consider, for example, the case of a two-site adaptation involving a deleterious
intermediate, starting with a population fixed for the suboptimal ab haplotype. The
overall influence of recombination on the rate of establishment of the AB haplotype
will then be a function of two opposing effects. On the one hand, the rate of origin
of AB haplotypes by recombination between the two single-mutation haplotypes
(aB and Ab) will be proportional to the rate of recombination between the sites
(c). On the other hand, recombinational breakdown discounts the net selective
advantage of resultant AB haplotypes from sb to sb − c. This occurs because in the
early stages of AB establishment, ab haplotypes still predominate, and hence are
the primary partners in recombination events with AB, generating the maladaptive
Ab and aB products. Thus, because the product c(sb − c) is maximized at c = sb/2,
two-site adaptations are expected to emerge most rapidly in chromosomal settings
where the recombination rate is half the selective advantage of the final adaptation.
This is a rather specific requirement, as the optimal recombination rate depends
on the advantage of the final adaptation. Moreover, even in the case of neutral
intermediates and at the optimal recombination rate, the rate of establishment is
generally enhanced by much less than an order of magnitude relative to the situation
with complete linkage (Lynch 2010).

The situation is particularly bleak when first-step mutations are deleterious. In
this case, if the rate of recombination exceeds the selective advantage of the AB
haplotype (i.e., sb − c < 0), recombination presents an extremely strong barrier to
establishment of the AB haplotype, as most recombinant (Ab and aB) intermediates
are removed by selection more rapidly than the AB type can be promoted. Thus, be-
cause the role that recombination plays in the origin of specific adaptations depends
on both the selective advantage of the final product, the selective disadvantages of
the intermediate states, and the physical distance between the genomic sites of the
underlying mutations, recombination is far from universally advantageous.
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The Phylogenetic Dispersion of Mean Phenotypes

The theory discussed above provides insight into the rapidity with which popula-
tions can respond to novel and/or persistent directional selective challenges. Such
scenarios might be encountered in a continuous coevolutionary arms race between
a host cell and a pathogen, or in situations involving a sudden environmental shift.
However, numerous cellular traits may have been under very similar selective pres-
sures across phylogenetic lineages since their origin. This is likely to be true, for
example, for enzymes whose sole function has always been to convert a specific sub-
strate into a specific product, membrane channels specialized to admitting and/or
excluding specific ions, or polymerases responsible for generating complementary
base-pair matches.

In such cases, the dynamical response to changing selection pressures is no
longer the key issue. The more relevant evolutionary focus is the long-term steady-
state probability distribution of alternative genotypes. Although natural selection
relentlessly strives to improve trait performance, there are numerous reasons why
perfection will seldom, if ever, be achievable. First, absolute limits to the refinements
of chemical and physical processes are dictated by factors such as diffusion rates and
effectively discrete processes such as the energy associated with individual hydrogen
bonds. Second, the stochastic processes of mutation and drift can result in the
dispersion of mean phenotypes around an expected value, to a degree that depends
on the range of effectively neutral parameter space. Third, mutation pressure will
almost never be perfectly aligned with the goals of selection, and this will cause the
average phenotype to deviate from an optimum, even in the absence of mutation
bias.

The latter two points have significant implications for interpreting patterns of
phenotypic divergence. Most notably, populations under identical selection pres-
sures will not necessarily have identical mean phenotypes, but instead will exhibit
a dispersion of such measures. Moreover, the most common phenotype need not be
the optimum phenotype. Finally, gradients of mean phenotypes with respect to Ne
are likely to be molded by differences in the power of random genetic drift across
the Tree of Life. To reduce the likelihood of evolutionary cell biology succumbing
to the common practice of interpreting all phylogenetic variation in phenotypes as
necessary reflections of differences in selective environments, these basic principles
will first be sketched out for the case of a very simple two-state trait, and then
further explored for traits encoded by multiple genetic loci.

Two-state traits. Consider a single biallelic locus with one allele (denoted as state
1) having a fractional selective advantage s over the other allele (denoted as state
0). Although allele 1 has the highest achievable fitness, this does not ensure that
once fixed, allele 1 will be immune to replacement by the suboptimal type. Denoting
the mutation rate from allele 0 to 1 as µ01, with µ10 being the reciprocal mutation
rate, and assuming a haploid population, we wish to determine the long-term mean
frequency of allele 1.

The simplest situation involves a population with a small enough effective size
that the waiting times between mutations destined to fixation are large enough that
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the population is nearly always fixed for one allele or the other, with probabilities
p̃0 and p̃1. The domain of Ne and mutation rates necessary for such a situation
is equivalent to that noted above for the sequential-fixation model, with the more
general model (allowing for any Ne) being outlined in Foundations 5.3.

Under these weak-mutation, strong-selection conditions, a lineage spends a long
period of time in one particular monomorphic state before making a stochastic shift
to another. The intervening intervals (waiting times for transitions) are functions
of the relative strengths of selection, mutation, and random genetic drift, but over
a very long time period, the rate of movement from state 0 to 1 must equal that
in the opposite direction (a principle known as detailed balance in the statistical
physics literature). This is because, whether favorable or encouraged by mutation
pressure, the most abundant state provides more opportunities for transitions, which
are individually less likely to proceed to fixation; in contrast, the rarer state provides
fewer transition opportunities, but when these arise they are more likely fix. It then
follows that

p̃0 · (Nµ01) · φ01 = p̃1 · (Nµ10) · φ10, (5.7)

where φ01 and φ10 denote the probabilities of fixation of newly arising beneficial
and deleterious alleles, defined by Equation 4.1b. Each side of this equation is the
product of the expected frequency of a state, the rate of origin of mutations to the
opposite state, and the probability of fixation of the mutant allele. Using the useful
identity φ01/φ10 = eS , where S = 2Nes, and the fact that p̃1 = 1 − p̃0, Equation 5.7
rearranges to

p̃0 =
1

1 + βeS
, (5.8)

where β = µ01/µ10 is the ratio of the mutation rates in both directions (mutation
bias being implied when β 6= 1).

This simple model illustrates three key points. First, unless completely lethal,
the low-fitness state has a non-zero probability of occurrence. Thus, despite constant
selection pressure, a lineage is not expected to remain in a stable fixed state forever.
Second, the two alleles approach equal probabilities as βeS → 1. This composite
parameter is simply equal to the product of the mutation and selection biases in
favor of state 1, so that even if state 1 is selectively favored (S > 0), state 0 will
be more common than state 1 if there is mutation bias in the opposite direction
of sufficient strength that βeS < 1. The relevance of this point is that maximum
divergence occurs when βeS = 1, again demonstrating the potential for substantial
variation in the face of uniform selection. Third, if the effective population size
and/or strength of selection is sufficiently small that S � 1 (the domain of effective
neutrality), the equilibrium frequency of the disfavored allele will be entirely driven
by mutation pressure. In this case, because eS ' 1, p̃0 ' 1/(1+β), which is a function
of the relative (but not absolute) mutation rates.

These expectations are altered when the population-level mutation rate exceeds
the limits of the domain of the sequential model (Foundations 5.3). Most notably,
Equation 5.8 defines the lower bound to the expected frequency of the low-fitness
allele. The expected frequency of the beneficial allele declines once the population-
level mutation rate (Neµ01) exceeds ∼ 0.01 (i.e., a new mutation enters the population
at least every 100 generations), asymptotically approaching the neutral expectation
p̃1 ' β/(1 + β) as Neµ01 exceeds 1.0 (Figure 5.5). The latter condition arises when
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mutation brings in allelic variants faster than natural selection can promote ben-
eficial over detrimental alleles. In this case, the population is also almost always
represented by a polymorphic collection of both alleles, rather than by a state of
fixation.

Multistate-traits and the drift-barrier hypothesis. Extension of the preced-
ing single-locus model to an arbitrary number of L sites (factors) yields additional
insights into the limits to what natural selection can accomplish. To appreciate the
fundamental points in a relatively simple manner, it will be assumed that all genetic
factors are equivalent, with two alternative (+ and −) allelic states contributing pos-
itively and negatively to the trait. Depending on the context, these factors may be
viewed as single nucleotides, amino-acid codons, or entire genes.

For all but the two most extreme genotypes (all + or all − alleles), a mul-
tiplicity of functionally equivalent classes exists with respect to the number of +

alleles, i. These are defined by the binomial coefficients. As an example, for the
case of L = 4, there are 24 = 16 possible genotypes, but just five genotypic classes
(having 0, 1, 2, 3, 4, and 5 + alleles, with respective multiplicities 1, 4, 6, 4,
and 1) (Figure 5.6). With equivalent fitness for all members (haplotypes) within
a particular class, this variation in multiplicity of states plays a significant role in
determining the long-term evolutionary distribution of alternative classes, as classes
with higher multiplicities are more mutationally accessible. This type of biallelic
model has been widely exploited in theoretical studies of the genetic structure of
quantitative (multilocus) traits (Walsh and Lynch 2018), and will be encountered
in a number of different contexts in subsequent chapters, including the evolution of
protein-protein interfaces, transcription-factor binding sites, and growth rate. Here,
we assume a haploid, nonrecombining population of N individuals. The site-specific
per-generation mutation rates from the − to the + state, and vice versa, are again
defined as µ01 and µ10, respectively.

As with the single-factor model, the multiple-factor model has a long-term
steady-state probability distribution of population residence in the L + 1 alterna-
tive states. Again, starting with the assumption that population-level mutation
rates are low enough that transitions only occur between adjacent classes (satisfy-
ing the conditions for a sequential-fixation scenario), the relative flux rates between
classes are equal to the expressions on the arrows in Figure 5.6. These rates are
proportional to the products of rates of mutational production and probabilities of
subsequent fixation, with the numerical coefficients being defined by the numbers of
− and + sites within each class. The absolute population size N defines the number
of mutational targets per generation, but because N influences all mutational flux
rates in the same way, it is omitted as a prefactor, although both N and Ne still
influence the equilibrium solution via the fixation probabilities (Equation 4.1b).

This linear sequential model has a relatively simple solution (Berg et al. 2004;
Sella and Hirsh 2005; Lynch and Hagner 2014; Lynch 2020). As a reference point,
consider first the extreme case of effective neutrality. In this situation, η = µ01/(µ01+

µ10) = β/(1+β) is the expected equilibrium frequency of + alleles at each site, which
arises when the net flux of + → − and − → + mutations is balanced. With no
selection for particular combinations of alleles, each site evolves in an independent
fashion, so the steady-state distribution of phenotypes under neutrality is simply
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equal to the binomial probability distribution,

p̃n,i =

(
L

i

)
ηi(1− η)L−i

= C ·
(
L

i

)
βi (5.9)

where n denotes the neutral condition, and i denotes the number of + alleles in a
genotypic class. The term in large parentheses is the binomial coefficient L!/[i!(L−i)!]
(which is the multiplicity of alternative orderings of + and − positions within a
particular class i), and C = (1+β)−L. Equation 5.9 defines the long-term probability
of a population residing in each of the L + 1 possible genotypic classes, i.e., the
fractional time wandering over the evolutionary landscape that is spent in each
class. Note that the neutral steady-state distribution depends only on the ratio of
mutation rates (β), not on their absolute values. Denoting the overall genotypic
state as the sum of + alleles, the long-term mean and variance of the trait are Lη

and Lη(1− η), respectively.
Under the sequential model, selection transforms the neutral distribution in a

remarkably simple way, with each class being weighted by the exponential function
of the scaled strength of selection Si = 2Nesi,

p̃i = C · p̃n,i · eSi , (5.10)

where C is a new normalization constant that ensures that the p̃i sum to 1.0. The se-
lection coefficients associated with each class are generally defined as deviations from
some benchmark in the population (say the optimum type), but this does not mat-
ter, as the reference is a constant that simply enters the normalization constant. The
utility of this approach is that, provided there are mutational connections between
all adjacent states, Equation 5.10 can be applied to any fitness function describing
the relationship between s and i.

Taken together, Equations 5.9 and 5.10 show that the equilibrium frequencies
of the genotypic classes are functions of three factors: 1) the multiplicity of config-
urations, as defined by the binomial coefficients; 2) the ratio of mutation rates; and
3) the strength of selection scaled by the power of random genetic drift. All other
things being equal, the within-class multiplicity magnifies the likelihood of residing
in such a state. This demonstrates that mutation need not be directionally biased
to have an impact on the overall distribution. All that is required is that neutral
distribution deviates from the expectations under selection alone, which will almost
always be the case.

Two examples will now be explored to illustrate how these three factors jointly
define the distribution of phenotypes within and among alternative population-
genetic environments. First, consider the simple case in which a trait determined
by just L = 2 factors is under stabilizing selection, such that there is an optimum
phenotype θ, with fitness (W ) dropping off at a rate determined by the width of the
fitness function ω (analogous to the standard deviation of a normal distribution).
This Gaussian (bell-shaped) function is defined by

Wi = e−(i−θ)
2/(2ω2). (5.11)
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With two sites, there are three possible genotypic classes, i = 0, 1, and 2, with the
phenotypically equivalent +− and −+ states being lumped into the i = 1 class.
Selection is purely directional if the optimum is at or beyond an end state, i.e.,
θ ≤ 0 or ≥ L, and neutrality is approached as the fitness function becomes flatter,
i.e., ω → ∞. Although i is confined to integer values, θ need not be, and if θ has a
value other than 0, 1, or 2, the optimum phenotype is unattainable. The selection
coefficients can be simply defined as deviations of fitness from the maximum value
of 1, si = 1−Wi. The mean phenotype (in this case, the average genotypic value of
i) is p̃1 + 2p̃2, which reduces to 2η in the case of neutrality.

This expansion to a second site introduces complexities not encountered with the
one-site model (Figure 5.7a). For example, for the case of θ = 1.5, where the optimum
is straddled by the class 1 and 2 genotypes, assuming mutation bias towards − alleles
(β < 1), the long-term genotypic mean never reaches the optimum, even at very large
Ne, and instead remains much closer to 1. This bias results because although the
class 1 and 2 genotypes have equivalent fitness, mutation pressure towards − alleles
weights the frequency of class 1 by a factor of 2β (the two being the multiplicity of
this class), but class 2 by the smaller factor of β2 (from Equation 5.10)

For the case in which θ = 2 (pure directional selection), there is a progressive
succession of the prevailing genotype classes with increasing Ne (Figure 5.7b). When
Ne is sufficiently low to impose effective neutrality, class 0 predominates owing to
the mutation bias towards − alleles. With increasing Ne, selection becomes more
effective at promoting class 1, but there remains effective mutation pressure against
class 2. Finally, with very large Ne, selection becomes efficient enough to drive
class 2 to near fixation, thereby decreasing the incidence of class 1. These results
show that in the face of a constant pattern and strength of selection, the genotypic
mean can exhibit a considerable gradient with Ne owing to changes in the power of
drift. They also show that appreciable incidences of all three genotypic classes can
be expected over time in lineages with intermediate Ne, i.e., the population mean
phenotype is expected to wander temporally between alternative states despite the
imposition of constant selection.

As a second example, consider the case in which fitness declines with the number
of − alleles (L− i) in a multiplicative fashion,

Wi = (1− s)(L−i), (5.12)

where i is the number of beneficial (+) alleles in the genome. Three examples are
shown in Figure 5.8 for different numbers of completely linked loci, L = 104, 105, and
106. In each case, the overall performance is equally subdivided across all L factors,
such that s = 1/L. With such large numbers of loci, the analytical solution noted
above is not reliable at large Ne, as the number of mutations arising per generation
may exceed the limit of the domain of the sequential model, although results have
been obtained by computer simulations (Lynch 2020).

Three general features are clear (Figure 5.8). First, as already noted, when Ne
is sufficiently small that the mutational effects are rendered effectively neutral, the
mean fraction of + alleles is defined by the neutral expectation, with the probability
of a + allele being η at each locus. Second, with increasing Ne, the mean fraction of
+ alleles progressively increases, converging on 1.0 as Ne becomes much greater than
1/(2s). This gradient in trait means with Ne is a result of the drift barrier, which
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increasingly compromises the ability of natural selection to alter the frequencies of
mutations as the population size declines. The exact location of the drift barrier is
defined by the relative power of drift and selection, becoming lower with smaller s,
but also by the mutation bias and by the multiplicity effect. Third, the observed
gradients are much shallower than the expectations under free recombination. This
illustrates the point made in Chapter 4 that owing to selective interference among
linked loci, populations with large absolute sizes behave genetically as though they
are much smaller. For example, in the absence of selective interference, sites with
selection coefficients equal to 10−5 are expected to be nearly fixed for + alleles
once the absolute population size exceeds 500,000, but with linked loci at the same
absolute population size, the vast majority of alleles are of the − type owing to the
combination of mutation pressure and random genetic drift (Figure 5.8).

These results highlight the riskiness of an evolutionary biology that assumes
that all phenotypes simply reflect optimal outcomes dictated by natural selection.
In addition to the pervasive influence of drift, mutation can cause mean phenotypes
to deviate from the optimum in substantial and often unexpected ways that are not
simply functions of the magnitude of mutation bias. Rather, when alternative, func-
tionally equivalent underlying genotypes exist for a trait, the multiplicity of certain
intermediate combinations can result in a mutational pull of the mean phenotype
away from the optimum. This effect becomes particularly significant when the phe-
notypic optimum is far from the expected mean under neutrality alone, especially
if the level of multiplicity for the optimum is relatively small relative to other phe-
notypic states. Moreover, cases may even exist in which the opposing pressures of
selection and mutation are sufficiently strong that the equilibrium mean-phenotype
distribution can have two peaks, one driven by selection and the other by mutation
(Lynch and Hagner 2014; Tuǧrul et al. 2015; Lynch 2018).

Summary

• Critical to understanding the evolutionary potential and limitations of phyloge-
netic lineages is information on the distribution of fitness and phenotypic effects
of new mutations. Based on bioenergetic considerations alone, few mutations can
have absolutely zero fitness effects. Multiple lines of evidence indicate that the
vast majority of mutations are deleterious, with most being very mildly so and
the mode being near zero.

• The frequency of mutations with very small effects almost certainly increases
in organisms of larger size, and there is strong evidence for a substantial pool
of mutations that are only sensitive to selection in species with large effective
population sizes (Ne). These mutations play a key role in defining the limits to
adaptation in different phylogenetic lineages.

• Despite the common view that populations under identical selection pressures
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will tend to be highly similarly phenotypically, many plausible situations exist in
which uniform selection combined with random genetic drift and/or mutation bias
can lead to substantial interspecies divergence, sometimes more than expected
under drift alone.

• Many molecular adaptations require the co-occurrence of two or more mutations
to elicit a phenotype with elevated fitness. Theory suggests that the rapidity
(on an absolute time scale) of acquiring such adaptations is roughly independent
of Ne if the intermediate states are neutral, but scales negatively with Ne if the
intermediate states are deleterious, and more rapidly so with increasing numbers
of intermediate steps. Thus, the likelihood of alternative paths of adaptive evolu-
tion can be strongly modulated by changes in Ne. However, sufficiently high rates
of multinucleotide mutation can instantaneously embark a complex genotype on
a more rapid path to establishment, the more so in larger populations.

• Many cellular traits have retained the same function for hundreds of millions
of years, and may have been under nearly invariant selection pressures over this
same time scale. This shifts the evolutionary focus away from dynamical changes
in allele frequency under directional selection to the long-term steady-state prob-
ability distribution of alternative phenotypic states. The drift-barrier hypothesis
predicts that, despite the operation of persistent directional or stabilizing selec-
tion, the mean phenotypes of such traits will commonly exhibit gradients with
respect to Ne, with the level of functional refinement increasing with the latter.

• Aside from being the source of variation upon which natural selection operates,
mutation impacts the expected distribution of mean phenotypes because geno-
typic states differ in the multiplicity of ways in which they can be constructed
from the underlying set of genetic loci. Mutation bias further influences the evo-
lutionary attraction towards a particular region of phenotypic space, in ways that
may conflict with or reinforce prevailing selection pressures.

• Taken together, these results from evolutionary theory call into question the
common practice of assuming that observed mean phenotypes provide a perfect
reflection of prevailing selection pressures. Even under constant environmental
conditions, the most common phenotype can be an unreliable indicator of the
optimum defined by natural selection.
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Foundations 5.1. The distribution of fitness effects of newly arising muta-
tions. The success of natural selection depends critically on the presence of mutations
with large enough effects to overcome the stochastic effects of random genetic drift.
Yet, the distribution of fitness effects (DFE) of de novo mutations is one of the most
poorly known aspects of genetics relevant to evolution. The central problem is that
biology is structured in such a way that a large fraction of mutations have effects that
are too small to be perceived as allele-frequency changes in laboratory experiments on
reasonable time scales. Relying on results from subsequent chapters, here the case is
made that the genome-wide DFE is highly skewed towards deleterious mutations with
tiny effects, although many details remain to be worked out.

First, because the costs of biosynthesis of the four nucleotides differ, even among
unexpressed mutations with no functional effects, only a very small fraction is likely
to be absolutely neutral. From Foundations 17.2, the total cost of synthesizing the A
and T in an A:T (or T:A) bond exceeds that for the C and G in a C:G (or G:C) bond
by ∼ 2 ATP equivalents. From Equation 8.2b, it is known that the cost of building a
cell (in 109 ATPs) is a function of its volume (V , in µm3), ' 27V 0.96. Thus, as a first-
order approximation a transversion from A/T to C/G (or vice versa) alters the cell’s
energy budget (and the cell-division time) by a fraction 10−10 in a bacterial-sized cell
of 1 µm3 and by 10−12 in a medium-sized eukaryotic cell of 100 µm3. The only truly
neutral mutations may be those that alter A:T to T:A or C:G to G:C in nucleotide
sites that are fully nonfunctional (i.e., are not transcribed and do not serve regulatory
purposes).

Second, there are no absolutely neutral insertions and deletions, Because a com-
plementary nucleotide pair in DNA has a total cost of ∼ 100 ATP equivalents, a single
base-pair insertion will impose a fractional reduction in fitness ' 100/[(27× 109)V ] '
10−9/V (again, rounding off to an order of magnitude), with an insertion x base pairs
in length having a x-fold higher cost. These are the minimal costs of insertions, as
would be expected in nonfunctional DNA. The total magnitude of effect would be
substantially larger in functional regions owing to frameshifts in coding DNA and/or
alterations in regulatory regions.

Third, owing to the additional energetic costs of gene expression (Lynch and
Marinov 2015), nucleotide sites in protein-coding genes have average costs that are ∼
100× those for unexpressed nucleotides, and owing to the different costs of synthesizing
alternative amino acids, an amino-acid altering mutation can further alter the overall
cost per site by a factor of 0.1 to 6.0 (Foundations 17.2). This means that based on
energetic costs alone, depending on the level of gene expression, amino-acid altering
mutations will have average fitness effects on the order of 10× to 600× those for the
most innocuous silent-site substitutions noted above, with the dispersion around these
expectations following roughly a log-normal distribution with a range of at least an
order of magnitude in both directions. For example, in a bacterial-sized cell, the fitness
effects of amino-acid substitutions based on biosynthetic costs alone will be distributed
over a range of 10−10 to 10−6. In addition to these energetic consequences, amino-acid
substitutions can have effects associated with protein function ranging from near zero
to essentially lethal (s = 1), with most having s� 0.1 and the average being of order
s = 0.01 (Chapter 12). Summing both types of effects, we expect the distribution of
fitness effects of amino-acid altering mutations to have a very wide range, likely with
a mode of at least 10−8 in bacteria, and perhaps several orders of magnitude higher.

These biological considerations allow a crude genome-wide view of the DFE for
de novo mutations. In most bacteria, ∼ 95% of the genome is coding DNA, and
perhaps half of the intergenic sites and silent sites will have functional consequences
associated with gene regulation. However, with increasing organism size, genomes
become progressively more bloated with nonfunctional intergenic and intronic DNA
as well as with more complex regulatory regions (Lynch 2007). As a consequence, in
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many vertebrates and land plants, < 2% of the genome is coding DNA and > 50%
of the remaining nucleotide sites are likely nonfunctional and so experience fitness-
altering mutations only via small energetic effects. Owing to the nature of the genetic
code, ∼ 25% of coding-region sites are silent and the remaining 75% are amino-acid
replacement sites (Lynch 2007), and assuming no mutation bias, one in three nucleotide
substitutions at silent sites will have no energetic consequences. In addition, across
the Tree of Life, ∼ 10% of mutations involve insertions and deletions of one to several
nucleotides, with the remainder being base substitutions (Chapter 4). Taking all of
these observations into consideration leads to DFEs with the provisional forms outlined
in Figure 5.1, as further discussed in the main text.

Foundations 5.2. Divergence under uniform selection. Although it is generally
thought that selection will increase the evolutionary determinism of a system, caus-
ing pairs of populations under identical selection pressures to be more similar than
expected on the basis of random assortment of variation, this is not necessarily the
case (Cohan 1984; Lynch 1986). Consider a pair of populations exposed to identical
conditions and starting with two alleles, A and a, with identical frequencies of p and
(1− p), respectively. Letting φ(p) be the probability of fixation of allele A, the proba-
bility that a pair of populations will ultimately experience fixation for different alleles
is ∆ = 2φ(p)[1 − φ(p)], which reaches a maximum value when φ(p) = 0.5. Under the
naive view that the beneficial allele always fixes, one expects φ(p) = 1 and ∆ = 0, but
this is incorrect because the probability of fixation of beneficial alleles is < 1.

That populations can sometimes diverge to a greater extent under uniform selec-
tion than under pure neutral drift can be seen as follows. In the absence of selection,
the probability of fixation of allele A is simply p, and the probability of alternative
outcomes is ∆ = 2p(1 − p), which is maximized when p = 0.5. For the same reason,
the probability of divergence is increased by selection if φ(p) under selection is closer
to 0.5 than the initial frequency p. Because φ(p) > p for a selectively favored allele,
it follows that a minimum requirement for increased divergence under pan-selection is
that the starting frequency of the advantageous allele be < 0.5.

The conditions for excess divergence under drift plus selection to exceed that
under drift alone are not very restrictive. Consider two replicate populations with
identical initial frequencies of the A allele, p = 0.25. Under pure drift, the probability
that one replicate becomes fixed for A and the other for a is 2 ·0.25 · (1−0.25) = 0.375.
Now suppose that A is weakly favored by selection, with Nes = 0.5. Again assuming
p0 = 0.25, Equation 4.1a gives the fixation probability of A as 0.46, implying a proba-
bility of fixing alternative alleles of 2 · 0.46 · 0.54 = 0.496, close to the maximum level
of divergence expected under neutrality. Thus, even when experiencing identical direc-
tional selection pressures, populations that initiate with low-frequency, advantageous
alleles can exhibit levels of divergence conventionally interpreted as being associated
with diversifying selection. Of course, this analysis ignores the recurrent downstream
introduction of mutations, which could ultimately lead to convergence.

Foundations 5.3. Mean probabilities of alternative alleles at steady state.
A concern with the sequential model outlined in the text is that large populations are
expected to reside in polymorphic states for significant amounts of time. This would
not be a problem if the average frequencies of alleles when monomorphic were the
same as those while polymorphic, but such a condition is only met in the special case
of neutrality. This disparity arises because deleterious mutations that are strongly in-
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hibited from going to fixation can nonetheless maintain measurable within-population
frequencies owing to recurrent mutational input. As population sizes increase, the
likelihood of residing in a polymorphic state necessarily increases, owing to the greater
total influx of variation per generation. Under such conditions, one can still inquire as
to the average frequency of a sampled allele over a long-term steady-state equilibrium,
but this average must also factor in all possible polymorphic states, ranging from allele
frequency (1/N) to [1− (1/N)] for haploids.

Let P1, P0, and Pp denote the steady-state probabilities of a population being
monomorphic for the optimal allele (1), monomorphic for the suboptimal allele (0),
or polymorphic (p). Under the sequential model, P1 + P0 ' 1. Here, we make use of
a result from diffusion theory that describes the steady-state probability distribution
of allele frequency x for the deleterious state 0 (which is equivalent to the beneficial
allele 1 being present at frequency 1−x), described more fully by Kimura et al. (1963),
Wright (1969), and Charlesworth and Jain (2014). Although actual allele-frequency
distributions are discrete, with large N , the probability that a population has allele
frequency x can be accurately approximated by the continuous distribution

φ(x) = CxU10−1(1− x)U01−1e−Sx, (5.3.1a)

where U01 = 2Neµ01, U10 = 2Neµ10, and the normalization constant

C =
Γ(U01 + U10)

Γ(U01) · Γ(U10) · 1F1(U10; (U01 + U10);−S)
, (5.3.1b)

ensures that integration of the distribution over the full range of allele frequencies
sums to 1.0. Γ denotes the gamma function, and 1F1 is the confluent hypergeometric
function. These two functions can be calculated numerically using series expansions
defined respectively as Equations 6.1.2 and 13.1.2 in Abramowitz and Stegun (1964).

The probability of being monomorphic for state 1 can be approximated by inte-
gration of the end class, implying an absence of the deleterious allele,

P1 =

∫ 1/N

0

φ(x) · dx.

Because x is very small in this region, both (1− x) and e−Sx can be approximated as
1, leading to

P1 '
(
C

U10

)(
1

N

)U10

. (5.3.2a)

At the opposite end of the spectrum, using x ' 1 and e−Sx ' e−S yields the probability
of being monomorphic for state 0,

P0 =

∫ 1

1−(1/N)

φ(x) · dx '
(
C

U01

)(
1

N

)U01

e−S . (5.3.2b)

Here, it can be seen that the ratio P1/P0 obtained with this approach deviates from
the prediction of the sequential model, p̃1/p̃0 = (µ01/µ10)eS (inferred from Equation
5.8), unless µ01 = µ10. Although the details will not be covered here, it can be shown
that the probability of polymorphism, Pp = 1− P0 − P1, is only weakly dependent on
the magnitude of selection, and generally does not exceed 0.1 until Neµ01 > 0.01.

The average frequencies of the two alleles over the stationary distribution can be
obtained by weighting the frequency classes by their densities, Equation 5.3.1a, and
integrating over (0,1), which yields

p0 =
µ10 · 1F1[(U10 + 1); (U01 + U10 + 1);−S]

(µ01 + µ10) · 1F1[U10; (U01 + U10);−S]
. (5.3.3)
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Foundations 5.4. The detailed-balance solution for the evolutionary dis-
tribution of alternative molecular states. Here we assume a linear array of
alternative molecular states, with population-level transitions only occurring between
adjacent states (Figure 5.6). For the latter condition to be met, each transition rate
must be sufficiently small that a population generally resides in one state for an ex-
tended period of time before fixation of a subsequent mutation leads to a switch
between states. Under these conditions, a relatively simple model defines the proba-
bility of residing in each class after a sufficient amount of time has elapsed to ensure
potential occupancy over the entire distribution of states. At this equilibrium, for
any particular state, the rates of entry and exit must be equal, a condition known as
detailed balance. The overall form of the steady-state distribution, which depends on
the full set of transition rates, is reached regardless of the starting conditions.

Letting mi,j denote the rate of evolutionary transition from state i to state j, we
have a system of L+ 1 simultaneous equations (where L denotes the final state in the
series, which starts with index 0),

p0(t+ 1) = (1−m0,1)p0(t) +m1,0p1(t),

pi(t+ 1) = mi−1,ipi−1(t) + (1−mi,i−1 −mi,i+1)pi(t) +mi+1,ipi+1(t),

pL(t+ 1) = mL−1,LpL−1(t) + (1−mL,L−1)pL(t).

Assuming nonzero transition rates between all adjacent classes in this linear array, the
equilibrium solution (the steady-state probability of being in state i) takes on a simple
form (Lynch 2013),

p̃i =

(∏i−1
j=0mj,j+1

)(∏L
k=i+1mk,k−1

)
C

(5.4.1)

where the first term in the numerator is equal to the product of all transition rates
pointing up toward the class, the second term is the product of all transition rates
pointing down toward the class, and C is simply a normalization constant that ensures
that all of the p̃i sum to one (it is equal to the sum of numerators for all i, and is
generally called the partition function).

As an example, with four alternative states (indexed 0, 1, 2, 3), the equilibrium
probabilities become

p̃0 = m1,0m2,1m3,2/C,

p̃1 = m0,1m2,1m3,2/C,

p̃2 = m0,1m1,2m3,2/C,

p̃3 = m0,1m1,2m2,3/C,

where C is the sum of the numerators in all four expressions. The steady-state prob-
abilities, p̃i, can be equivalently viewed as the proportion of time a specific lineage
spends in state i over a long evolutionary period, or as the fraction of independent
populations experiencing identical population-genetic environments that are expected
to reside in class i at any specific time.

In the context of the model introduced in the text, each of the m coefficients can
be viewed as the product of the number of mutations arising in the population per
generation and the probability of fixation. Letting N be the population size, µi,j be
the mutation rate from allelic state i to j (where j can be only i−1 or i+1), and φi,j be
the probability of fixation of a newly arisen j allele in a population currently occupied
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by allele i, the transition rates are equal to the products of the relevant numbers
of new mutant alleles arising per generation and their probabilities of fixation, i.e.,
mi,j = 2Nµi,jφi,j assuming diploidy (or one half that assuming haploidy). Because
every coefficient has the same prefactor, 2N or N , this can be ignored, reducing the
coefficients to mi,j = µi,jφi,j . (In the text, the µi,j are functions of per-site mutation
rates and the number of sites relevant to the particular transition).

A second key simplification arises from the behavior of the probability of fixation
in opposite directions between adjacent states. Letting si denote the selective disad-
vantage of allele i, measured relative to a perfect fitness of 1.0, then si+1 < si implies
that allele i + 1 is beneficial compared to allele i. Assuming mutations with additive
effects on fitness, application of the formula for the fixation probability of new muta-
tions, Equation 4.1b, yields the convenient result that φi,i+1/φi+1,i = e4Ne(si−si+1) for
diploids (with a 2 substituted for the 4 in haploids) (Berg et al. 2004; Sella and Hirsh
2005; Lynch 2013; Lynch and Hagner 2014).

As a simple application of the preceding methods, consider the situation in which
there are just two alternative states, A and a, with the mutation rate from A to a
being u, from a to A being v, and s being the selective advantage of a (negative if a is
disadvantageous). The combined mutation/selection pressure towards a is then uφA,a,
while that towards A is vφa,A, implying that

p̃a =
uφA,a

uφA,a + vφa,A
, (5.4.2a)

where the denominator is the partition function. Dividing all terms by vφa,A, and using
the relationship just noted for ratios of opposite fixation probabilities for diploids, leads
to the simplification

p̃a =
(u/v)e4Nes

1 + (u/v)e4Nes
. (5.4.2b)
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Böndel, K. B., S. A. Kraemer, T. Samuels, D. McClean, J. Lachapelle, R. W. Ness, N. Colegrave,

and P. D. Keightley. 2019. Inferring the distribution of fitness effects of spontaneous mutations

in Chlamydomonas reinhardtii. PLoS Biol. 17: e3000192.

Booker, T. R., and P. D. Keightley. 2018. Understanding the factors that shape patterns of

nucleotide diversity in the house mouse genome. Mol. Biol. Evol. 35: 2971-2988.

Breen, M. S., C. Kemena, P. K. Vlasov, C. Notredame, and F. A. Kondrashov. 2012. Epistasis as

the primary factor in molecular evolution. Nature 490: 535-538.

Campos, P. R. A., and Wahl, L. M. 2009. The effects of population bottlenecks on clonal interfer-

ence, and the adaptation effective population size. Evolution 63: 950-958.

Campos, P. R. A., and Wahl, L. M. 2010. The adaptation rate of asexuals: deleterious mutations,

clonal interference and population bottlenecks. Evolution 64: 1973-1983.

Charlesworth, B., and D. Charlesworth. 2010. Elements of Evolutionary Genetics. Roberts and

Co. Publ., Greenwood Village, CO.

Charlesworth, B., and K. Jain. 2014. Purifying selection, drift, and reversible mutation with

arbitrarily high mutation rates. Genetics 198: 1587-1602.

Cohan, F. M. 1984. Can uniform selection retard random genetic divergence between isolated

populations? Evolution 38: 495-504.

DePristo, M. A., D. L. Hartl, and D. M. Weinreich. 2007. Mutational reversions during adaptive

protein evolution. Mol. Biol. Evol. 24: 1608-1610.

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford Univ. Press, Oxford, UK.

Frenkel, E. M., B. H. Good, and M. M. Desai. 2014. The fates of mutant lineages and the

distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.

Genetics 196: 1217-1226.



30 CHAPTER 5

Gillespie, J. H. 1983. Some properties of finite populations experiencing strong selection and weak

mutation. Amer. Natur. 121: 691-708.

Gillespie, J. H. 1984. Molecular evolution over the mutational landscape. Evolution 38: 1116-1129.

Gokhale, C. S., Y. Iwasa, M. A. Nowak, and A. Traulsen. 2009. The pace of evolution across fitness

valleys. J. Theor. Biol. 259: 613-620.

Good, B. H., and M. M. Desai. 2014. Deleterious passengers in adapting populations. Genetics

198: 1183-1208.

Good, B. H., M. J. McDonald, J. E. Barrick, R. E. Lenski, and M. M. Desai. 2017. The dynamics

of molecular evolution over 60,000 generations. Nature 551: 45-50.

Higgs, P. G. 1998. Compensatory neutral mutations and the evolution of RNA. Genetica 102/103:

91-101.

Huber, C. D., B. Y. Kim, C. D. Marsden, and K. E. Lohmueller. 2015. Determining the factors

driving selective effects of new nonsynonymous mutations. Proc. Natl. Acad. Sci. USA 114:

4465-4470.

Iwasa, Y., F. Michor, and M. A. Nowak. 2004. Stochastic tunnels in evolutionary dynamics.

Genetics 166: 1571-1579.

Johri, P., B. Charlesworth, and J. D. Jensen. 2020. Towards an evolutionarily appropriate null

model: jointly inferring demography and purifying selection. Genetics 215: 173-192. .

Katju, V., and U. Bergthorsson. 2019. Old trade, new tricks: insights into the spontaneous

mutation process from the partnering of classical mutation accumulation experiments with high-

throughput genomic approaches. Genome Biol. Evol. 11: 136-165.

Keightley, P. D. 1994. The distribution of mutation effects on viability in Drosophila melanogaster.

Genetics 138: 1315-1322.

Keightley, P. D., and A. Eyre-Walker. 1999. Terumi Mukai and the riddle of deleterious mutation

rates. Genetics 153: 515-523.

Keightley, P. D., and A. Eyre-Walker. 2007. Joint inference of the distribution of fitness effects of

deleterious mutations and population demography based on nucleotide polymorphism frequen-

cies. Genetics 177: 2251-2261.

Kim, B. Y., C. D. Huber, and K. E. Lohmueller. 2017. Inference of the distribution of selection

coefficients for new nonsynonymous mutations using large samples. Genetics 206: 345-361.

Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge,

UK.

Kimura, M. 1985. The role of compensatory neutral mutations in molecular evolution. J. Genetics

64: 7-19.

Kimura, M., T. Maruyama, and J. F. Crow. 1963. The mutation load in small populations.

Genetics 48: 1303-1312.

Kitahara, K., Y. Yasutake, and K. Miyazaki. 2012. Mutational robustness of 16S ribosomal RNA,

shown by experimental horizontal gene transfer in Escherichia coli. Proc. Natl. Acad. Sci. USA

109: 19220-19225.

Komarova, N. L., A. Sengupta, and M. A. Nowak. 2003. Mutation-selection networks of cancer



EVOLUTIONARY POPULATION GENETICS 31

initiation: tumor suppresser genes and chromosomal instability. J. Theor. Biol. 223: 433-450.

Kondrashov, A. S., S. Sunyaev, and F. A. Kondrashov. 2002. Dobzhansky-Muller incompatibilities

in protein evolution. Proc. Natl. Acad. Sci. USA 99: 14878-14883.

Kulathinal, R. J., B. R. Bettencourt, and D. L. Hartl. 2004. Compensated deleterious mutations

in insect genomes. Science 306: 1553-1554.

Lind, P. A., E. Libby, J. Herzog, and P. B. Rainey. 2019. Predicting mutational routes to new

adaptive phenotypes. eLife 8: e38822.

Long, H., W. Sung, S. Kucukyildirim, E. Williams, S. W. Guo, C. Patterson, C. Gregory, C.

Strauss, C. Stone, C. Berne, et al. 2017. Evolutionary determinants of genome-wide nucleotide

composition. Nature Ecol. Evol. 2: 237-240.

Lynch, M. 1986. Random drift, uniform selection, and the degree of population differentiation.

Evolution 40: 640-643.

Lynch, M. 2007. The Origins of Genome Architecture. Sinauer Assocs., Inc., Sunderland, MA.

Lynch, M. 2010. Scaling expectations for the time to establishment of complex adaptations. Proc.

Natl. Acad. Sci. USA 107: 16577-16582.

Lynch, M. 2013. Evolutionary diversification of the multimeric states of proteins. Proc. Natl. Acad.

Sci. USA 110: E2821-E2828.

Lynch, M. 2018. Phylogenetic diversification of cell biological features. eLife 7: e34820.

Lynch, M. 2020. The evolutionary scaling of cellular traits imposed by the drift barrier. Proc. Natl.

Acad. Sci. USA 117: 10435-10444.

Lynch, M., and A. Abegg. 2010. The rate of establishment of complex adaptations. Mol. Biol.

Evol. 27: 1404-1414.

Lynch, M., M. Ackerman, K. Spitze, Z. Ye, and T. Maruki. 2017. Population genomics of Daphnia

pulex. Genetics 206: 315-332.

Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva, and J. Willis. 1999.

Spontaneous deleterious mutation. Evolution 53: 645-663.

Lynch, M., and K. Hagner. 2014. Evolutionary meandering of intermolecular interactions along

the drift barrier. Proc. Natl. Acad. Sci. USA 112: E30-E38.

Lynch, M., and G. K. Marinov. 2015. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA

112: 15690-15695.

McCandlish, D. M. 2018. Long-term evolution on complex fitness landscapes when mutation is

weak. Heredity 121: 449-465.

McCandlish, D. M., and A. Stoltzfus. 2014. Modeling evolution using the probability of fixation:

history and implications. Quart. Rev. Biol. 89: 225-252.

Neher, R. A. 2013. Genetic draft, selective interference, and population genetics of rapid adaptation.

Ann. Rev. Ecol. Evol. Syst. 44: 195-215.

Nguyen Ba, A. N., I. Cvijović, J. I. Rojas Echenique, K. R. Lawrence, A. Rego-Costa, X. Liu, S.

F. Levy, and M. M. Desai. 2019. High-resolution lineage tracking reveals travelling wave of

adaptation in laboratory yeast. Nature 575: 494-499.



32 CHAPTER 5

Pénisson S., T. Singh, P. Sniegowski, and P. Gerrish. 2017. Dynamics and fate of beneficial

mutations under lineage contamination by linked deleterious mutations. Genetics 205: 1305-

1318.

Quandt, E. M., D. E. Deatherage, A. D. Ellington, G. Georgiou, and J. E. Barrick. 2014. Recursive

genomewide recombination and sequencing reveals a key refinement step in the evolution of a

metabolic innovation in Escherichia coli. Proc. Natl. Acad. Sci. USA 111: 2217-2222.

Rice, D. P., B. H. Good, and M. M. Desai. 2015. The evolutionarily stable distribution of fitness

effects. Genetics 200: 321-329.

Robert, L., J. Ollion, J. Robert, X. Song, I. Matic, and M. Elez. 2018. Mutation dynamics and

fitness effects followed in single cells. Science 359: 1283-1286.

Rodrigues, J. V., and E. I. Shakhnovich. 2019. Adaptation to mutational inactivation of an essential

gene converges to an accessible suboptimal fitness peak. eLife 8: e50509.

Santiago, E. 2015. Probability and time to fixation of an evolving sequence. Theor. Popul. Biol.

104: 78-85.

Sella, G., and A. E. Hirsh. 2005. The application of statistical physics to evolutionary biology.

Proc. Natl. Acad. Sci. USA 102: 9541-9546.

Stephan, W. 1996. The rate of compensatory evolution. Genetics 144: 419-426.

Stephan, W., and D. A. Kirby. 1993. RNA folding in Drosophila shows a distance effect for

compensatory fitness interactions. Genetics 135: 97-103.

Sung, W., M. S. Ackerman, M. Dillon, T. Platt, C. Fuqua, V. Cooper, and M. Lynch. 2016.

Evolution of the insertion-deletion mutation rate across the tree of life. G3 (Bethesda) 6: 2583-

2591.

Tóth-Petróczy, A., and D. S. Tawfik. 2013. Protein insertions and deletions enabled by neutral

roaming in sequence space. Mol. Biol. Evol. 30: 761-771.
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