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7. THE CELLULAR ENVIRONMENT

14 January 2023

Armed with an appreciation for the variation in the population-genetic environment
experienced by different lineages and the principle factors governing evolutionary
change, we now consider a few of the most basic chemical and physical constraints
dictating the properties of cells. Unlike the population-genetic environment, sev-
eral aspects of the cellular environment are largely invariant across the Tree of Life.
These include the elemental makeups of cells, the diffusion properties of molecules,
the effects of temperature on biological processes, and the amounts of energy ac-
cessible from various food types. Some lineages have evolved special attributes to
cope with such challenges, e.g., increased protein stability in thermophiles, and the
use of motors for molecular transport in eukaryotes. Nonetheless, immutable laws
of physics and chemistry ultimately dictate what natural selection can and cannot
do.

The cellular environment is in large part defined by ancient historical contingen-
cies that established the foundational features of biology. For example, the earliest
stages of evolution set the elemental requirements of the biochemical building blocks
from which all of today’s cell bodies are constructed. Life depends on < 20% of the
119 but aside from carbon, hydrogen, and oxygen, most of these have environmen-
tal concentrations thousands to millions of times lower than those found in cellular
biomass, highlighting the power of cells to sequester nutrients. Of the myriad forms
of organic compounds, life has come to rely on just a handful of fundamental types
– amino acids, nucleotides, lipids, carbohydrates, and a few others.

Here, we consider some of the quantitative consequences of biophysical and
chemical constraints on cell biology. With an overview of what cells are made of, how
many molecules are present per cell, and how much carbon and energy is required
for cellular reproduction, the stage will then be set for understanding the breadth of
issues covered in subsequent chapters. As introduced here, and further elaborated on
in Chapter 8, numerous cellular features scale with cell size in predictable ways that
transcend phylogenetic boundaries. Finite numbers of molecules per cell, combined
with the physical constraints associated with molecular diffusion and temperature,
dictate the possible rates of intracellular biochemical reactions. The energy content
of resources constrains the rate at which new biomass can be constructed. These
and many other “rules of life” define the ultimate limits of the evolutionary playing
field. An excellent overview of many of the points discussed below can be found in
Milo and Phillips (2016).

The Molecular Composition of Cells
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Given that life evolved in an aqueous environment, it is not surprising that the
primary component of all of today’s cells is water, albeit with a much higher solute
load than in the surrounding environment. Cell dry weights scale with cell volume in
what appears to be a near universal relationship across all phylogenetic groups. Over
a range of eleven orders of magnitude in cell volume, there is a smooth power-law
relationship of

W ' 0.57V 0.92, (7.1)

where cell dry weight W has units of pg (picograms, or 10−12 grams) and cell volume
has units of µm3 (cubic microns, or 10−12 ml) (Figure 7.1). The exponent is signif-
icantly less than 1.0, indicating that cell density (W/V ) decreases with the ∼ 0.08

power of cell volume. Because 1 µm3 of water weighs 1 pg, these results imply that
between one-fifth (large eukaryotic cells) and one-third (small bacterial-sized cells)
of total cell weights are comprised of biomolecules and ions. Exceptions occur in
diatoms, haptophytes, and foraminiferans, whose cells have hard outer coverings.

Water. Because of life’s association with water from the start, many of the features
of biology have been permanently molded by the unique properties of this simple
molecule. Consisting of a bent complex of two hydrogen atoms and one oxygen
atom, H2O molecules have polarity, with a slight negative charge on the oxygen side
and a slight positive charge on the hydrogen side. As a result, liquid water naturally
forms a three-dimensional network with each molecule being connected to three to
four others via hydrogen bonds in a sort of tetrahedral arrangement (Figure 7.2).

These unique organizational features enable water to operate as a highly ef-
fective solvent for other polar molecules. Solubility is an essential feature of most
biomolecules involved in chemical reactions requiring diffusive encounters with dis-
solved reactants. On the other hand, the exclusion of nonpolar molecules from
the water network provides a pathway for the spontaneous construction of certain
cellular features. For example, in water, the hydrophobic tails of lipid molecules
naturally aggregate in a highly coordinated fashion (Chapter 15), generating the
membranes upon which cells rely.

The hydrogen-bonding ability of water can also present a problem. First, the
inner hydrophobic cores that maintain protein structure can be compromised by
the intrusion of water molecules. Hydrophobic surface residues also cause proteins
to be promiscuously sticky. This imposes strong selective pressure for soluble pro-
teins to achieve their globular structures by populating their outer surfaces with
hydrophilic amino acids (Chapter 12). Second, the cohesion within networks of
water molecules imposes a drag on large molecules moving through the cytoplasm
and on cells moving through aqueous environments, limiting rates of intracellular
reactions, and extracellular nutrient uptake and swimming speeds of mobile species
(Chapters 16, 18, and 19).

Finally, the thermal properties of water are unique. The viscosity of water de-
clines by nearly 50% from 4◦C to 40◦C, so warm water imposes less resistance to the
directed movements of cells but also provides less buoyancy (e.g., imposing higher
sinking velocities in aquatic settings). At normal atmospheric pressure, pure water
freezes at 0◦C, imposing a lower temperature barrier to single-celled organisms inca-
pable of thermoregulation. However, the fact that water has a maximum density at
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4◦C provides a buffer against such an extreme, as aquatic environments freeze from
the top down, with bottom waters never colder than 4◦C. Ball (2008, 2017) provides
a comprehensive overview of many additional knowns and unknowns regarding the
biological consequences of water.

Elemental composition. Of the many dozens of chemical elements found in the
natural world, only about 20 are essential to life. Ignoring hydrogen and oxygen,
carbon is always predominant in terms of molar composition, followed by nitrogen
(Table 7.1). The bulk of the remaining biomass is associated with two other el-
ements, phosphorus and sulfur, incorporated into one or more building blocks of
cells (e.g., nucleic acids, amino acids, and lipids), along with five other major ions
– sodium, calcium, magnesium, potassium, and chloride. All of these elements gen-
erally have intracellular concentrations > 1 mM. Essential trace metals (e.g., iron,
manganese, cobalt) that serve as cofactors of individual enzymes are present at 10×
to 100× lower concentrations. Redfield (1934) first proposed that the ratio of C, N,
and P atoms in cells is typically on the order of 106:16:1, and the average of the
exemplars in Table 7.1, 100:13:1, is close to this expectation.

A comparison of cellular and environmental elemental concentrations reveals the
extent to which cells go to sequester nutrients. There can be considerable variation
in the biogeochemistry of different environments, but reliable average estimates
exist for the dissolved content of ocean water. As many of the species in Table 7.1
derive from marine environments, molar concentrations in seawater will be used as a
reference point. This shows that the degree of cellular enrichment averages ∼ 5000×
for carbon, and 50, 000 to 60, 000× for nitrogen and phosphorus. The remaining
major ions range from being nearly isotonic with sea water to enriched by no more
than 25×. On the other hand, several essential trace metals (iron, manganese, and
cobalt) are enriched by factors > 106.

To appreciate the challenges imposed by such nutrient acquisition, consider as an
example phosphorus, which has an average cellular enrichment of ∼ 60, 000× . Living
in an average marine environment, in order to produce an offspring, a bacterial
cell with volume 1µm3 would need to accomplish the equivalent of fully clearing a
surrounding volume of ∼ 60, 000µm3 of P, and for the trace metals noted above, the
equivalent of ∼ 106 cell volumes would need to be scrubbed clean. For a moderate
sized eukaryotic cell, 100µm3 in volume, the necessary volumes of environmental
clearance are 100× higher.

When viewed in the context of cell-division times, the impressive rate at which
cells harvest nutrients becomes clear. Again, consider a cell with volume 1 µm3

(equivalent to 10−15 liters) at birth. With an average internal concentration of 115
mM for phosphorus (Table 7.1), such a cell would contain ∼ 7×107 P atoms. Cells of
this size have a minimum doubling time of ∼ 0.4 days at 20◦C (Chapter 8), implying
an incorporation rate of ∼ 2000 P atoms/sec at maximum growth rate. Similar
calculations for cells of volume 10, 100, and 1000 µm3, growing at maximum rates,
indicate incorporation rates of ∼ 1 × 104, 9 × 104, and 6 × 105 P atoms/sec. Given
the average 100:13:1 ratio for C:N:P noted above, these incorporation requirements
would be 100 and 13× higher for C and N atoms, respectively. Thus, depending on
their size, when growing at maximum rates, cells incorporate on the order of 106 to
1010 atoms per minute.
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As can be seen in Table 7.1, there is variation among species in elemental com-
position, and some of this may relate to cell size. Menden-Deuer and Lessard (2000)
summarized the scaling of carbon content with cell volume in a wide variety of
unicellular marine eukaryotes. Aside from chrysophytes, which have inexplicably
low carbon estimates, the average exponent on the power-law relationship across
groups is 0.91 (SE=0.03), so there is a decline in carbon content per cell volume in
larger cells. For cells of volume 1, 10, 100, and 1000 µm3, mean carbon contents
are 0.30, 0.23, 0.18, and 0.14 pg/µm3, implying a reduction in cell density with
increasing cell size, consistent with the results in Figure 7.1. Using Equation 7.1,
the average fractional contributions of carbon to dry weight for cells of these sizes
are ' 0.53, 0.49, 0.46, and 0.44, respectively. Thus, a rough rule of thumb from these
and other studies (Ho and Payne 1979; Roels 1980; Finlay and Uhlig 1981; Williams
et al. 1987; von Stockar and Marison 1989; de Queiroz et al. 1993) is that ∼ 50% of
average dry weight in both prokaryotic and eukaryotic cells consists of carbon.

Table 7.1. Contents of the major elemental constituents (other than hydrogen and oxy-
gen) in a variety of unicellular species. Concentrations in the top half of the table are in
units of mM, whereas as those in the bottom half are in units of µM. Species are in order
of increasing cell volume (µm3). The means for Ca and Sr exclude the haptophytes E.
huxleyi and Gephyrocapsa oceanica, which have hard outer shells consisting of these ele-
ments. Prochlorococcus and Synechococcus are cyanobacteria; Vibrio and Escherichia are
heterotrophic bacteria; Pycnococcus, Nannochloris, Pyramimonas, and Dunaliella are green
algae; Saccharomyces is budding yeast; Nitzschia, Amphidinium, and Thalassiosira are di-
atoms; and Prorocentrum and Thoracosphaera are dinoflagellates. Seawater concentrations
are taken from Nozaki (1997). References: cyanobacteria (Heldal et al. 2003); heterotrophic
bacteria (Fagerbakke et al. 1996, 1999); yeast (Lange and Heijnen 2001); and all others (Ho
et al. 2003).

Species Size C N P S K Na Mg Ca Cl

Prochlorococcus sp. 0.16 15323 1682 87 82 49 410 371 25 173
Synechococcus sp. 1.00 14906 1755 122 72 78 248 104 49 120
Vibrio natriegen 3.50 8333 1837 157 116 320 400 73 8 1320
Escherichia coli 3.80 7675 1880 263 74 62 210 61 10 104
Pycnococcus provasoli 10 14000 1900 72 77 89 19 4
Nannochloris atomus 14 14000 2000 81 29 78 19 2
Saccharomyces cerevisiae 67 15809 2218 131 27 39 7 26 0
Nitzschia brevirostris 119 11000 1700 250 290 610 150 67
Emiliania huxleyi 142 10000 1200 130 100 110 18 19000
Gephyrocapsa oceanica 142 8900 1000 140 140 130 18 18000
Dunaliella tertiolecta 227 11000 1900 49 14 18 18 1
Amphidinium carterae 514 1200 160 9 12 1 5 3
Pyramimonas parkeae 587 6800 570 32 47 27 55
Prorocentrum minimum 833 22000 1800 16 350 210 160 61
Thoracosphaera heimii 1353 5100 400 63 82 63 30 2800
Thalassiosira eccentrica 6627 18000 1900 240 470 790 520 160

Means 11503 1494 115 124 167 255 106 232 429

Seawater 2.25 0.03 0.002 28 10.2 469 52.7 10.3 546
Cellular enrichment 5,100 50,000 57557 4.4 16.4 0.5 2.0 22.6 0.8
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Sr Fe Mn Zn Cu Co

Pycnococcus provasoli 8 910 150 66 38 7
Nannochloris atomus 4 1100 93 140 19 7
Saccharomyces cerevisiae 354 31 642 46
Nitzschia brevirostris 330 790 590 69 46 14
Emiliania huxleyi 44000 460 940 50 9 39
Gephyrocapsa oceanica 39000 560 990 57 16 50
Dunaliella tertiolecta 4 560 93 74 33 1
Amphidinium carterae 11 120 47 12 5 3
Pyramimonas parkeae 390 500 250 48 20 8
Prorocentrum minimum 470 1100 980 140 440 73
Thoracosphaera heimii 5000 110 79 7 4 6
Thalassiosira eccentrica 950 1600 500 240 68 59

Means 796 680 395 129 62 24

Seawater 89 0.00054 0.00036 0.0054 0.0024 0.000020
Cellular enrichment 8.9 1,260,000 1,086,000 24,000 26,000 1,182,000

Biomolecules. The organic fraction of cells consists primarily of macromolecules
such as proteins, nucleic acids, lipids, and carbohydrates (as well as their precursor
building blocks). Most information on this fundamental issue is confined to quite old
literature, sometimes based on methods that are not terribly reliable, and variation
is also associated with growth conditions during assays (Chapter 9). The most
reliable statement that can be made is that proteins comprise the largest fraction of
the organic component of cellular biomass (on a dry weight basis), typically in the
range of 40 to 60%, but somewhat lower in eukaryotes than in prokaryotes (Figure
7.3). The other primary contributors are RNA (including messenger, ribosomal, and
transfer RNAs), carbohydrates (especially in species with cell walls – most bacteria,
and some eukaryotes such as fungi and plants), and lipids (which are more enriched
in eukaryotic cells, owing to the presence of internal membranes).

Although the fractional contributions to biomass from protein, RNA, lipids,
and carbohydrates do not obviously scale with cell volume, the data are scant and
noisy enough that such patterns cannot be entirely ruled out. However, the matter
is readily accessible for DNA, as genomes have been sequenced for a substantial
number of species, and 109 bp of DNA is equivalent to ∼ 1 pg dry weight. Here,
there is a very strong negative scaling of proportional contribution with cell volume
(Figure 7.3). Despite its centrality to all of life, DNA almost never constitutes > 10%

of the biomass of any cell, and this fraction declines to 0.001% in relatively large
eukaryotic cells. Thus, although larger cells tend to have larger genomes (Lynch
2007), scaling as ∼ V 0.25, the proportional investment in total cellular biomass is
progressively diminished.

Numbers of Biomolecules per Cell

The preceding results provide a generic view of cellular contents per unit biomass,
but finer details (e.g., numbers of molecules per cell volume) are required to under-
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stand issues related to the properties of specific gene products, such as reaction rates
among colliding particles, cellular stochasticity, random variation in inheritance, etc.
High-throughput methods for characterizing and quantifying individual mRNA and
protein molecules provide insight into these matters. Although data are only avail-
able for a few species, over a range of five orders of magnitude in cell size (including
both prokaryotes and eukaryotes), the total number of protein molecules/cell scales
nearly isometrically with cell volume (V , in units of µm3),

Ntot,p = (2.0× 106)V 0.95, (7.2a)

(Figure 7.4). The smallest known bacterial cells harbor < 105 total protein molecules,
whereas larger eukaryotic cells (like those in metazoans) contain > 109.

To resolve the degree of gene-expression stochasticity, a view at the gene-specific
level is necessary. Owing to the fact that large cells often harbor more genes, the
average number of proteins within a cell per active gene scales with cell volume more
weakly than the total number of proteins per cell,

Np = 1820V 0.68. (7.2b)

Moreover, there is substantial variation in the amount of protein product associated
with different genes within a cell around the overall mean Np. Distributions of the
numbers of proteins for individual genes are approximately log-normal (a normal
“bell-shaped” distribution on a logarithmic scale), with the mean being considerably
larger than the median, owing to the long tail to the right. With such distributions,
the smallest known cells are on the edge of having just one (or fewer) proteins per
cell for some genes. For a cell the size of E. coli, ∼ 1 µm3, a substantial number
of genes are represented by fewer than 100 protein molecules per cell (Figure 7.4).
This means that genetically identical offspring resulting from binary fission can
vary substantially in their protein contents. If each of the n copies of a protein
in a parental cell is randomly partitioned to daughters, the coefficient of variation
(ratio of standard deviation to the mean) among sisters will equal

√
1/n. Further

complications arise when proteins are aggregated in vesicles (Chapter 9).
What do the preceding numbers mean in terms of cellular concentrations? Fo-

cusing on the number of proteins representing an average gene, Equation 7.2b, the
concentration on a per µm3 basis becomes 1820V −0.32. Multiplying this by 1015

µm3 / liter, and dividing by the number of molecules per mol (Avogadro’s number,
6.023 × 1023), yields an average concentration of 3.0V −0.33 µM (µmol/liter, where 1
µmol = 10−6 mol). With protein numbers 10× above and 10× below the average,
this concentration would be multiplied by 10 and 0.1, respectively. Thus, cellular
concentrations of proteins are typically in the nM (nanomolar, or 0.001 µM) to µM
range, with concentrations tending to decline with increasing cell volume.

The situation is much more extreme for messenger RNAs, as even large, well-
nourished cells typically harbor orders of magnitude fewer mRNAs than the total
number of proteins (Figure 7.4). The total number of transcripts per cell scales
more weakly with cell volume than for the case of proteins,

Ntot,t = 6760V 0.42, (7.3a)

and the mean number of transcripts per active gene is just

N t = 3.2V 0.26 (7.3b)
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(Figure 7.4). Typically, there are hundreds to thousands of more copies of proteins
than transcripts per gene within cells, and the average gene is represented by fewer
than ten mRNAs at any particular time. As a consequence, a substantial number
of genes are at least transiently devoid of transcripts in small cells, and this is even
true for a small subset of genes in species with the largest of cells.

As will be discussed in Chapter 8, the numbers of ribosomes per cell also scale
across the Tree of Life with cell volume in a predictable manner. Here, however, cells
are much more guarded against stochastic loss, as the average number of ribosomes
per cell is generally > 100 even in the smallest cells, ranging up to 108 in the largest
cells. This should not be too surprising, as complete loss of ribosomes is equivalent
to a death sentence.

Passive Transport of Particles Through the Cytoplasm

To carry out their key functions, biomolecules often have to travel to particular
destinations to encounter specific substrate molecules. Except for large complexes
and cargoes within vesicles in eukaryotic cells, most molecules spend the majority of
their time moving by passive diffusion. Thus, to understand the ultimate biophysical
constraints on cellular functions, we require information on how rapidly molecules
can diffuse from one location to another. Due to background thermal motion, each
molecule within a cell is continuously jostled in random ways (often referred to
as Brownian motion), and until encountering an impervious barrier, such as the
cell membrane, will diffuse at a roughly constant average rate, depending on the
nature of the medium. The average distance moved after t time units is a function
of the diffusion coefficient D, defined as the average squared distance of molecular
movement per unit time (Foundations 7.1).

The reason for focusing on the squared distance is most easily understood in the
context of a random one-dimensional diffusion process. In this case, at each time
point a particle has an equal probability of moving to the left vs. the right, so the
average directional movement of particles is zero. Nonetheless, when molecules move
randomly, such that there is no memory in the process, the noise of each incremental
move is cumulative. Thus, although the mean location remains constant, with
increasing time a diminishing fraction of molecules will remain in the vicinity of their
initial location. With respect to the starting position, the probability distribution of
locations of individual molecules becomes wider and wider with time (t). Taking the
square root of the mean-squared distance,

√
2Dt, in the case of a one-dimensional

process, provides a measure of average absolute dispersion on the original scale.

Of course, not all diffusion processes in biology are one dimensional. Diffusion
of individual molecules within a fluid lipid membrane is a two-dimensional process,
whereas diffusion through the cytoplasm is three-dimensional. There is, however,
a simple algebraic relationship between the expected magnitude of diffusion and
the dimensionality of the process. As just noted, under one-dimensional diffusion, a
particle can move in only two directions, right vs. left. Adding a dimension increases
the magnitude of dispersion, owing to the reduction in the degree of back-tracking
(Figure 7.5). For example, considering a two-dimensional grid, a particle can move
in four directions (e.g., north, south, east, west), and on a three-dimensional lattice,
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there are six possible routes of movement. In these higher-dimensional cases, the
dispersion distance is the radial (straight-line) distance from the initial point, and
with two and three-dimensional diffusion, the root mean-squared distances after t
time units become

√
4Dt and

√
6Dt, respectively. Thus, the rate of diffusion relative

to an initial location increases with dimensionality, but the scaling with the square
root of time is retained. From these expressions, it can be seen that for an n-
dimensional process, the expected time required for a particle to move an absolute
distance of d units is d2/(2nD).

To understand the implications of diffusion limitation for cellular processes, we
require information on how the diffusion coefficient depends on the features of a
particle and the medium through which it moves. In its most elementary form, a
diffusion coefficient is defined as

D =
kBT

γ
, (7.4)

where kB is the Boltzmann constant (1.38×10−16 cm2· g · sec−2· K−1), which relates
energy at the particle level to temperature T in degrees Kelvin, and γ is the friction
coefficient, which is a net measure of the resistance imposed on particle movement
by the medium (with units of g · sec−1). The form of this expression is reasonably
intuitive – the numerator is a measure of the jostling due to thermal noise, and the
denominator is a measure of resistance to such jostling. Because most of life (other
than thermophiles) exists in the range of T ' 280 to 315 K, T can be approximated
as 300 K with only slight loss of accuracy. A sampling of diffusion coefficients for
small molecules in an aqueous environment is provided in Figure 7.6, where it can
be seen that large proteins diffuse up to 100× more slowly than small ions.

The friction coefficient depends on the medium as well as on the shape and
form of the particle, and many expressions have been developed to accommodate
such effects (He and Niemeyer 2003; Dill and Bromberg 2011; Soh et al. 2013).
For a perfectly spherical particle with radius r (in units of cm), the Stokes-Einstein
equation tells us that

γ = 6πηr, (7.5)

where π ' 3.142 is the universal constant (equal to the ratio of a circle’s circumference
to diameter), and η is the viscosity of the medium (with units g · cm−1· sec−1). For
water, η is temperature dependent, taking on values of 0.013, 0.011, 0.010, 0.0089,
and 0.0080 g · cm−1· sec−1 at 10, 15, 20, 25, and 30◦C. For simplicity, the 20◦C value
will be assumed in the following calculations. The diffusion coefficient of a sphere
in a typical aqueous environment then becomes

D ' 22× 10−6

r
, (7.6)

where the numerator has units µm3/sec, and r has units of µm. If is in units of nm,
D ' 22/r nm2/sec.

Biology introduces numerous complications. For example, most biomolecules
depart from a perfectly spherical geometry, and cytoplasm is substantially more
viscous than water. Here we will focus on proteins, which typically fold into globular
structures. The problem of particle shape can then be dealt with by considering the
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effective particle radius. For the ideal case of perfectly packed spherical proteins
composed of NAA amino acids, the radius would scale as N1/3

AA (because the volume
of a sphere is proportional to the cube of the radius). However, empirical study
implies that the average distance of a protein molecule’s parts to a central point
(often called the radius of gyration) scales (in units of cm) as

rg = (2.2× 10−8)N0.4
AA (7.7)

(Hong and Lei 2009). Subdivision of proteins into domains, less than perfect packing,
and various elastic features contribute to this elevated scaling relative to the ideal
situation. Tyn and Gusek (1990) find that a protein with radius of gyration rg
behaves hydrodynamically on average as though the effective radius is r ' 1.3rg.

Applying this correction factor and Equation 7.7 to Equation 7.6, we obtain an
expected diffusion coefficient for a protein in an aqueous environment of

D ' 770N−0.4
AA , (7.8)

with units of µm2/sec. Proteins diffuse at rates that are typically <10% of the rates
for individual amino acids (Figure 7.6).

Intracellular crowding imposes an additional impediment to molecular diffusion.
The internal milieu of a cell is hardly the open-water environment assumed in most
diffusion theory. Rather, 20 to 40% of the cytoplasmic volume of a typical cell is
occupied by proteins and other macromolecules (Zimmerman and Trach 1991; Luby-
Phelps 2000; Ellis 2001). As a consequence, the average distance between proteins
is on the order of the width of the proteins themselves. This then raises questions
as to how the basic composition of cells alters the freedom of movement of the very
molecules upon which life depends. On the one hand, molecular crowding reduces
the aqueous volume that must be searched to locate a small solute. But on the
other hand, transient molecular confinement, aggregation with molecules of opposite
charge, and sieving effects can inhibit the free diffusion of proteins. Although the
net consequences of these added complications are minor for small metabolites, the
diffusion coefficients for proteins are reduced by 10- to 50-fold in E. coli (Elowitz et
al. 1999; Konopka et al. 2006; Nenninger et al. 2010), and perhaps somewhat less
in eukaryotic cells (Luby-Phelps 2000; Dix and Verkman 2008).

For example, in an aqueous environment, green fluorescent protein (GFP), with
a chain length of 238 amino acids, has a diffusion coefficient of 87 µm2/sec, almost
exactly as predicted by Equation 7.8. In contrast, empirical estimates of GFP dif-
fusion within the cytoplasm of multiple bacteria (Caulobacter crescentus, E. coli,
Lactococcus lactis, and Pseudomonas aeruginosa) yields coefficients in the range of
5 to 15 µm2/sec (Konopka et al. 2009; Nenninger et al. 2010; Montero Llopis et al.
2012; Guillon et al. 2013; Mika et al. 2014), and on the order of 25 to 30 µm2/sec
in the slime mold Dictyostelium and mammalian cells (Swaminathan et al. 1997;
Potma et al. 2001). Examination of a diversity of proteins in E. coli demonstrates
that despite the crowdedness of bacterial cytoplasm, diffusion is well-described as a
Brownian process once the effective viscosity of the medium is accounted for (Bel-
lotto et al. 2022). Large complexes diffuse much more slowly. For example, the
estimated rate for a ribosome is 0.04 µm2/sec in E. coli (Bakshi et al. 2012). Mem-
brane proteins undergoing two-dimensional diffusion through a much more densely
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packed lipid milieu have diffusion coefficients in the range of 0.02 to 0.03 µm2/sec
in bacteria, with the rate declining with the number of transmembrane domains in
the protein (Kumar et al. 2010; Mika et al. 2014).

The preceding observations suggest that general diffusion processes may speed
up in eukaryotes. On the one hand, the average protein chain length for eukaryotes,
NAA = 532, is 45 to 60% larger than the means in bacteria (365) and archaea
(329) (Wang et al. 2011). On this basis, assuming similar folding architectures, all
other things being equal, Equation 7.8 implies that a ∼ 1.5× increase in total chain
length should yield a 15% reduction in the average diffusion coefficient for proteins in
eukaryotes. However, given that the density of eukaryotic cytoplasm is lower than in
prokaryotes, reduced crowding effects may essentially cancel this particle-size effect.
A third effect that merits further consideration is that active processes in eukaryotic
cells, such as those created by molecular motors, generate as by-products random
diffusion-like forces, thereby enhancing rates of molecular movement throughout the
cytoplasm even by non-carrier molecules (Guo et al. 2014).

Whether these cytoplasmic features of eukaryotic cells have evolved to facilitate
long-distance diffusion and/or result in relaxed selection against protein stickiness
remains a matter of speculation (Soh et al. 2013). There is, however, some evidence
that the diffusive properties of proteins coevolve with their proteomic environment.
For example, Mu et al. (2017) found that when placed in the cytoplasm of E. coli,
human proteins tend to stick to their foreign environment, but that modification of
a few surface amino-acid residues can yield diffusion rates equivalent to the native
E. coli proteins.

Finally, to appreciate the time scale of passive molecular diffusion, consider a
protein of moderate length with a diffusion coefficient of D ' 20 µm2/sec. In a three-
dimensional setting (e.g., cytoplasmic diffusion), the root mean-squared distance
traveled after t seconds will be d =

√
6Dt ' 11

√
t µm. The expected time to travel d

µm is then (d/11)2 sec. A spheroid bacterial cell with a 1 µm3 volume has a diameter
of 1.2 µm, so it would take ∼ 0.01 seconds for the protein to travel the width of the
cell. For a moderate-sized eukaryotic cell with volume 100 µm3, traversing the 5.8-
µm width requires ∼ 0.28 seconds. For a large spherical cell with volume 105 µm3

(which is attained in some marine diatoms and dinoflagellates), traveling the cell
width of 58 µm requires ∼ 28 seconds. Thus, molecular delivery across a cell based
on diffusion alone is effectively instantaneous in bacteria, and comes with no cost,
as it is entirely fueled by background thermal noise. In contrast, diffusion becomes
dramatically less efficient in large eukaryotic cells, which often transport material
by use of molecular motors, which run on ATP (Chapter 16). One final caveat with
respect to all of the above results is that the viscosity of cytoplasm appears to vary
significantly with the level of cell nutritional state, increasing in starved cells (Joyner
et al. 2016). All of the above issues, and more, are reviewed in Schavemaker et al.
(2018).

Intermolecular Encounter Rates

Proteins do not operate in isolation. More often than not, they aggregate into mul-
timeric complexes, and most engage with particular substrate molecules. Diffusion
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theory explains the rates of dispersion of individual particles, but the rate of en-
counter of interacting particles depends on particle sizes and concentrations. As an
entrée into this area, we consider the simple situation in which the two interacting
particle types are products of the same genetic locus, as in the case of two monomeric
subunits coalescing to form a dimer, a very common situation for proteins. (The
more general case of two different particles is derived in Foundations 7.2).

To move forward, we require a measure of the encounter rate per unit concen-
tration, ke, which is a function of the particle diffusion rate (Foundations 7.2) and
has units of events · cm3· sec−1 (or some other combination of distance and time
units). This must be multiplied by the product of the concentrations of the parti-
cles to be joined to account for the fact that both interacting partners are randomly
diffusing; in this particular example, each particle has the same concentration [C].
The resultant rate of encounter per unit volume, which has units of events · cm−3·
sec−1, must then be multiplied by the cell volume V (in units of cm3 per cell) to
give the total rate of encounter events within the cell. A small modification arises
because a particle cannot interact with itself, necessitating a correction factor of
1− (1/n), where n = [C] ·V is the expected number of particles per cell. (For n > 100,

this modification can be ignored. The final expression for the total rate of encounter
then becomes

RE = ke · [C]2 · V [1− (1/n)] = (11× 10−12) · [C]2V [1− (1/n)] (7.9)

with units of events/cell/sec, and the constant substituted for ke applies to the
specific case of two spherical particles of the same size (Foundations 7.2).

To gain some appreciation for the constraints on such encounters, and hence
the viability of a strategy to dimerize, consider a cell with a 1 µm3 volume (bac-
terial sized) and a molecule with a concentration of 1 µM, which as noted above
is within the range typically seen for proteins. Using the conversions 106µM/M,
1000 cm3/liter, and 6.02× 1023 molecules/mol, a 1 µM concentration transforms to
[C] = 6.02 × 1014 molecules/cm3. Thus, because there are 1012 µm3 in 1 cm3, the 1
µm3 cell is expected to contain n ' 602 molecules. Application of Equation 7.9 then
leads to an encounter rate of 4 × 106 events/cell/sec. Increasing the concentration
by a factor of x will increase the encounter rate by a factor of x2.

In the preceding example, n is sufficiently large that the correction factor has
essentially no effect. However, decreasing [C] and/or V begins to have a nonlinear
effect at sufficiently low values. For example, if the concentration is reduced to 0.01
µM, the expected number of molecules/cell is reduced to n ' 6, and the encounter
rate is reduced by a factor of (0.01)2(5/6) to ∼333 events/cell/sec. Further reducing
the cell volume to 0.1 µm3, then n < 1, and a protein would almost always be without
partners in a cell. These results demonstrate that constraints on the number of
molecules contained within small cells (Figure 7.4) must ultimately limit the reaction
rates that can be carried out (Klumpp et al. 2013).

Finally, it should be noted that all of the above considers only the physical
encounter rate between particles, assuming an ideal homogeneous setting with no
attractive or repulsive forces between particles. In doing so, it also only focuses
on translational diffusion across spatial points. Should the surface of each particle
contain a restricted reactive patch, this will reduce the effective encounter rate
by a factor related to the effective patch size per particle, after also taking into
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consideration the process of rotational diffusion (which refers to random movement
of a particle on its axes, apart from movement across space). These issues will be
taken in up in Chapters 13 and 18, focused on protein multimerization and nutrient
uptake.

Temperature-dependence of Biological Processes

Through its effects on rates of molecular motion, temperature influences virtually
all biological processes. For most biochemical interactions, elevated temperature
increases the reaction rate, at least up to the point beyond which the stability of
the reactants is compromised. Chemical reaction rates depend on the frequency of
successful encounters between participating molecules, and most reactions require
some amount of energy to go forward. The energetic barrier to a reaction is called
the activation energy (Ea), with a higher value of Ea implying a slower response to
temperature. A powerful result from statistical mechanics, the Boltzmann distribu-
tion, relates the distribution of energy states of molecules to ambient temperature
(Foundations 7.3).

This distribution has the useful property of being exponential in form, with
the mean energy state of molecules being the familiar kBT. For a system in ther-
modynamic equilibrium, the fraction of molecules with an energy state above the
activation energy is simply

fe = e−Ea/(kBT ). (7.10)

As temperature increases, more molecules have high enough energy to overcome the
activation barrier, and fe → 1 at a rate that depends on Ea. The overall reaction
rate is the product of the encounter rate between reactants (RE) and the fraction
of successful encounters,

Rtot = RE · fe = RE · e−Ea/(kBT ) (7.11)

Taking the log of this expression demonstrates that a plot of the log of a reaction
rate against the inverse of temperature (1/T ) is expected to yield a straight line

ln(Rtot) = a− b(1/T ) (7.12)

with the slope (b) estimating −Ea/kB, and the intercept (a) estimating the log of
the encounter rate, which is a function of the properties of reactants and their con-
centrations (Foundations 7.2). Such an inverse relationship between the rate of a
molecular reaction and 1/T is known as Arrhenius-rate behavior, after its early ad-
vocate (Arrhenius 1889), who derived the expression in a different way than pursued
in Foundations 7.3. Because kB is a constant, Equation 7.12 provides a simple means
for estimating the activation energy of a reaction. (It may be noticed from Equation
7.2.2 that temperature appears in the expression for RE, which is inversely related
to the viscosity of the fluid, but this is generally ignored under the assumption that
the exponential dependence of fe on temperature dominates the overall behavior).

Although the Arrhenius equation often provides an excellent description of the
temperature-dependence of simple chemical reactions, organisms consist of mixtures
of hundreds to thousands of biomolecules. Each biochemical reaction will have its
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own activation energy, with the concentrations and stabilities of the interacting part-
ners changing with environmental conditions, including temperature (e.g., Hunter
and Rose 1972; Alroy and Tannenbaum 1973; Herendeen et al. 1979). Many of
these reactions will operate in parallel (as, for example, independent pathways for
uptake of different nutrients), whereas others will operate in series (as in consecutive
steps in metabolic pathways). Thus, although there may be one rate-limiting step
at any particular temperature, the nature of this step (and its associated activation
energy) is likely to change among temperatures. Further complicating matters is
the fact that complex biomolecules tend to become increasingly unstable at high
temperatures and can have altered properties at low temperatures (Dill et al. 2011).

All of these issues motivate the question as to whether rates of higher-order
biological functions scale in accordance with Equation 7.13, and if they do, whether
there is any simple mechanistic interpretation of the fitted slopes and intercepts. At
best, any estimate of Ea for a cell-biological process would seem to be a composite
“effective” barrier to activation of the process. Nonetheless, it is often argued that
processes such as metabolic and developmental rates, and the “rate of living” (in-
verse of life span), scale in close accordance with the Arrhenius equation, at least
below temperatures at which key molecular/cellular processes begin to break down
(Gillooly et al. 2001; Savage and West 2006). It has been argued that in E. coli, most
biochemical reaction rates have similar responses to temperature under nonextreme
conditions, leading to an overall adherence to Arrhenius-rate behavior (Mairet et al.
2021).

Herein lies the problem. Although the range of temperatures consistent with
Arrhenius rate behavior are often referred to as being “biologically relevant,” this is
usually little more than a matter of convenience, with the edges of such regions often
being quite arbitrary. When taken to even moderately extreme temperatures, the
responses of cellular growth rates to temperature are virtually always curvilinear, in
contrast to the expectations from Equation 7.12, with the optimal temperature and
the form of the response curve often varying substantially among species (Figure
7.7). Even within the range of “meaningful” temperatures, not all biological rates
scale exponentially with temperature, with the response of growth rate to tempera-
ture approaching linearity in various unicellular eukaryotes (Montagnes et al. 2003).
Nor do all biological features respond in a positive way to a thermal increase. For
example, the cell sizes of unicellular eukaryotes often decline by ∼ 2 to 4% for each
1◦C increase in temperature (Montagnes and Franklin 2001; Atkinson et al. 2003).

Some have suggested that these kinds of variations in temperature response
curves can be accommodated by relatively simple modifications of the Arrhenius
equation, such as by subtracting or dividing one exponential expression by an-
other to account for contrasting responses of cell features to temperature (Mohr
and Kraweic 1980; Ratkowsky et al. 1983, 2005; Corkrey et al. 2014; Arroyo et al.
2022). For example, Dill et al. (2011) show how deviations from ideal Arrhenius
behavior can be accommodated by multiplying Equation 7.10 by a function that
accounts for increasing protein denaturation with temperature. Although the fits
of such mathematical relationships to biological features are often quite good over
a substantial temperature range, and the underlying models are frequently viewed
as first-principles sorts of derivations, caution is warranted in attaching too much
biological meaning to them. With four or more parameters, a wide variety of non-
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linear functions can yield essentially identical fits to the same data. Indeed, more
than 24 alternative mathematical functions have been proposed for the relationship
between reaction rates and temperature (Noll et al. 2020). Nonetheless, such general
statistical fits are of great interest, as they suggest the operation of universal scaling
features of biological traits, begging the question as to the underlying mechanisms
that apply across the Tree of Life.

One of these alternatives is a common rule-of-thumb in biology, the so-called Q10

rule, which states that biological rates typically increase by a factor of 2 to 3 with
a 10◦C increase in temperature (Raven and Geider 1988; Hansen et al. 1997), again
with a presumed focus on a “biologically relevant” temperature range. The idea was
first raised by Arrhenius’ Ph. D. advisor, Van’t Hoff, and can be crudely related to
the Arrhenius equation. For example, considering two commonly used temperatures,
12 and 22◦C (i.e., T = 285 and 295), then from Equation 7.10 the ratio of Arrhe-
nius rates at the high vs. low temperature is ∼ e0.00012(Ea/kB). If Ea/kB ' 8333, then
e1 ' 2.72, which is within the range of commonly observed Q10 estimates. This im-
plies that Ea/kB must typically be on the order of 8333. However, somewhat different
results will be obtained with different limits on the temperature range. For exam-
ple, applying temperatures of 22 and 32◦C yields a ratio of e0.00011(Ea/kB). Assuming
Ea/kB = 8333 still holds, this would imply Q10 = 2.52. Thus, the Q10 approach is an
approximation, albeit a fairly good one, if the system behaves in accordance with
the Arrhenius equation. However, there is little justification for claiming the supe-
riority of one approach over the other, as both are phenomenological with respect
to describing biological functions.

Energy, Carbon Skeletons, and Cell Yield

Heterotrophic organisms, incapable of fixing CO2, are reliant on the uptake and as-
similation of organic compounds for the production of new cellular biomass. The key
materials consist of reduced carbon compounds containing hydrogen, usually with
some oxygen, nitrogen, phosphorus, and/or sulfur atoms also present. In today’s
organisms, these substances are almost always ultimately derived from cellular ma-
terials or excretory products of photoautotrophs, with many undergoing secondary
modification in herbivores and detritivores before again being ingested by carni-
vores. Food materials provide both the carbon skeletons necessary for biosynthesis
of the monomeric building blocks of the cell, e.g., amino acids, nucleotides, and
lipids. They are also the source of energy for subsequent transformation into the
cell’s energetic currency, ATP.

The specific organic composition of food ultimately dictates the rate at which
a heterotroph can invest biomass and energy into self-maintenance, growth, and re-
production. In the organism, as in the furnace, the oxidation of organic substrates
releases energy, and some organic substances have higher energy contents than oth-
ers. The maximum amount of extractable energy of a substance is equivalent to its
heat of combustion, ∆HC , with the absolute limit to biological energetics being set
by the product of the latter and the consumption rate (ignoring the costs of building
and maintaining the metabolic machinery itself).

A deeper understanding of the biological relevance of heats of combustion can
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be achieved by considering the chemical composition of a substrate and the fates of
carbon-associated electrons upon combustion. Kharasch and Sher (1925) classified
organic compounds on the basis of the number of electrons that experience a tran-
sition from a methane-type bond (C-H) to a carbon dioxide-type bond (C=O) upon
combustion,

NE = 4NC +NH − 2NO (7.13)

for a molecule containing NC carbon, NH hydrogen, and NO oxygen atoms. The
structure of this expression follows from the fact that each carbon atom has four
outer-shell (valence) electrons of its own, sharing one additional electron with each
bonded hydrogen atom and two with each bonded oxygen. The electrons shared with
each hydrogen atom are free to move upon combustion, whereas the two associated
with each oxygen are already in the position expected after oxidation. Complete
combustion reconfigures hydrogen atoms into water, and oxygen atoms into CO2,
which from Equation 7.13 has NE = 0. For glucose, C6H12O6, NE = 24.

For carbon substrates commonly employed in laboratory growth experiments,
this composite measure of the degree of electron movement upon transformation
to CO2 and water is nearly perfectly correlated with known heats of combustion
determined in chemistry labs (Figure 7.8), with ∆HC (in units of kcal/mol) being
closely approximated by 27NE. Extensions to organic substrates containing nitrogen
and/or sulfur can be found in Kharasch and Sher (1925) and Williams et al. (1987).

These purely physico-chemical descriptors of substrate molecules are informative
with respect to growth rates of pure cultures of unicellular organisms raised in
chemostats (Chapters 8 and 17). For situations in which a single substrate is the sole
source of carbon and energy (and all other nutrients in excess supply), a compilation
of data from studies involving alternative carbon sources indicates that the growth
yield (g cell dry weight/g carbon consumed) increases with the heat of combustion
per carbon atom in the substrate, with no obvious differences between bacteria and
eukaryotes (Figure 7.8). However, beyond the point at which the caloric content
of the substrate exceeds 10 kcal/g carbon, the cell yield levels off at ∼ 1.4 g dry
weight/g carbon consumed. Because the values in Figure 7.8 are derived from
cultures growing at maximum rates, only a small fraction of the cell’s energy budget
is allocated to maintenance (Chapter 8), so the estimates provided are close to the
maximum biomass yields associated with the substrate.

This overall pattern, first suggested by Linton and Stephenson (1978), with
many fewer data than contained in Figure 7.8, implies that for low-energy substrates
(heats of combustion < 10 kcal/g carbon), heterotrophic cells are intrinsically energy
limited, i.e., they are incapable of experiencing the maximum possible yield of ∼ 1.4

g dry weight/g carbon consumed. Above a substrate heat of combustion of 10 kcal/g
carbon, the constant cell growth yield per unit carbon implies a progressive decline in
the efficiency of energy extraction with increasing energetic content of the substrate.
Thus, an energy content of ∼ 10 kcal/g carbon appears to separate a lower domain in
which the substrate provides insufficient energy to assimilate the available carbon
from an upper domain where energy is in excess of the requirements for carbon
assimilation. Foundations 2.3 takes these kinds of observations a step further to
estimate the amount of energy in units of ATP hydrolyses needed to produce a unit
of biomass.

Finally, recalling from above that the average fractional carbon mass per cell
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dry weight is ∼ 0.5, the cell yields in Figure 7.8 can be rescaled to units of g cellular
carbon/g substrate carbon, providing a measure of assimilation efficiency for carbon.
With dry-weight cell yields / g substrate carbon being in the range of 0.8 to 1.6 for
nearly all common substrates (Figure 7.8), this implies typical carbon assimilation
efficiencies in the range of 0.4 to 0.8. After nearly four billion years, this is the
best that natural selection has been able to achieve. 100% conversion of substrate
carbon into biomass is unobtainable, as energy must be extracted from some of the
substrate to carry out cellular functions, and some carbon is lost as CO2.

Summary

• Between 65 and 80% of the wet weight of cells consists of H2O, eukaryotic cells
being more watery than those of bacteria. Across the Tree of Life ∼ 50% of
cell dry weight is comprised of carbon atoms, and one- to two-thirds of the dry
weights of most cells consist of protein.

• The unique physical properties of water govern almost every aspect of biology,
as they dictate the folding stability of proteins, the ability of lipid molecules to
aggregate into membranes, the diffusion rates of molecules, and the challenges to
motility.

• Of the 20 chemical elements essential to life, many have intracellular concen-
trations enriched by factors of 103 to 106 relative to environmental levels. Such
factors are equivalent to the volume of the environment relative to that of the
cell that needs to be fully harvested to produce an offspring cell.

• Despite its centrality to life, the fractional contribution of genomic DNA to
cellular biomass scales negatively with cell volume, declining from ∼ 10% in the
smallest bacterial cells to < 0.001% in the largest eukaryotic cells.

• The total number of protein molecules per cell and the average number per gene
increase sublinearly with cell volume, consistent with larger cells being less dense
with biomaterials. Messenger RNAs are typically 100- to 10, 000-fold less abun-
dant per cell than their cognate proteins, with the mean number per gene often
being in the range of 1 to 10. With the distributions of both mRNAs and protein
molecules per gene per cell being approximately log-normal in form, there can
be significant stochastic variation in gene expression among genetically uniform
cells. Moreover, there must be a lower bound to cell size below which adequate
numbers of molecules cannot be harbored to reliably sustain key biochemical
reaction rates.

• Many molecules travel through cells by passive diffusion processes. Fueled by
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background thermal noise, such transport imposes no costs to the host cell. For
small bacterial-sized cells, an average protein can diffuse across a cell diameter
in several milliseconds, whereas such a sojourn can require up to half a minute in
some of the larger eukaryotic cells. Thus, diffusion limits to intracellular trans-
actions can ultimately constrain the rates of biological processes in eukaryotic
cells.

• Through its influence on the motion of all molecules, temperature plays a gov-
erning role in all reaction rates. A number of mathematical expressions have
been proposed as summary descriptors for the response of biological processes to
temperature, although the mechanistic interpretation of the fitted parameters is
open to debate.

• Life ultimately depends on the acquisition of energy. For aerobic heterotrophs
(most organisms other than photosynthesizers), food comes in the form of re-
duced carbon compounds, which provide both carbon skeletons for constructing
biomass and energy for carrying out cellular functions. The heats of combus-
tion of substrates provide reliable measures of the energy that organisms can
extract from such compounds. More reduced carbon compounds provide more
energy, but there is an intermediate level of substrate reduction (approximately
equivalent to that in glucose) above which carbon starts to be limiting.

• The upper limit of evolved assimilation efficiency of carbon compounds (fraction
of ingested carbon atoms incorporated into biomass) is ∼ 0.8, and the construction
of 10 grams dry weight of cellular biomass requires the energy released from the
hydrolysis of ∼ 1 mol of ATP.
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Foundations 7.1. Intracellular diffusion. In a homogeneous medium, small par-
ticles are subject to random walks as a consequence of background thermal pertur-
bations. This leads to diffusive particle movement from a starting location in a sym-
metric fashion. To minimize the mathematical details, the focus here will be on a
one-dimensional diffusion process, with a summary of the general results for two and
three dimensions following the initial details.

Consider a particle moving randomly to the right and left with equal probabilities
of 0.5 and fixed jump lengths, independent of prior motion at each time unit. Let t be
the total number of jumps, with t+ being the number to the right and t− the number
to the left, so that

t = t+ + t−.

The net displacement relative to a starting point at position 0 is then

x = t+ − t−.

Given t jostling episodes, the probability of t+ draws in the positive direction is given
by the binomial distribution

P (x) =
t!

t+!t−!

(
1

2

)t+ (1

2

)t−t+

=
t!

t+!t−!

(
1

2

)t

, (7.1.1a)

where y! = y · (y − 1) · (y − 2) · · · 1 is the factorial function.

For large t, this discrete-state formula can be simplified to a continuous distribu-
tion by first noting that t+ = (t+x)/2 and t− = (t−x)/2, substituting into Equation
7.1.1a, and then logarithmically transforming to obtain
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Factorial functions can be unwieldy, but large t allows the use of Stirling’s approxima-
tion for the logarithm of large factorials,

ln(y!) ' ln(2πy)

2
+ y ln(y)− y, (7.1.2)

application of which simplifies Equation 7.1.1b to
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Further simplification is accomplished by noting that for y < 0.5,

ln(1 + y) ' y − (y2/2), (7.1.3a)

ln(1− y) ' −y − (y2/2). (7.1.3b)

Applying these approximations to the preceding expression, followed by exponentiation
to return to the original scale eventually leads to

P (x) '
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2
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)
. (7.1.4a)
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We now modify Equation 7.1.4a to a more familiar and general form. First, we
note that the variance in the number of jumps to the right follows from the properties
of the binomial distribution. When the probability of each type of event is 0.5, the
binomial variance associated with each event is 0.5 · 0.5, and summing over t inde-
pendent events leads to variance σ2 = t/4. Second, the disparity between numbers of
right and left jumps, x, can be rewritten as (t+ − t−) = (2t+ − t), and because the
expected number of jumps to the right (the mean) can be written as µ = t/2, this
further reduces to x = 2(t+ − µ). Substituting the latter expression and t = 4σ2 into
Equation (7.1.4a), we obtain

P (t+) =

(
1

2πσ2

)1/2

exp

(
− (t+ − µ)2

2σ2

)
. (7.1.4b)

This is the widely used normal (or Gaussian) distribution of a variable (in this case
t+) with mean µ and variance σ2.

In the current case, diffusion results in movement from the initial point, but with
no net bias, so we can rescale to a mean of zero. The variance σ2 can also be written
as the mean-squared deviation 2Dt, where D is the diffusion coefficient, with units
of length2/time (see main text). The one-dimensional diffusion distance d then has
probability distribution

P (d) =

(
1

4πDt

)1/2

exp

(
− d2

4Dt

)
. (7.1.4c)

Note that in the one-dimensional case, the diffusion variance is proportional to
2D, and increases linearly with time. In two dimensions, 2Dt becomes 4Dt, and with
three dimensions, it becomes 6Dt. The standard deviation is the root mean-squared
distance that a particle is expected to have traveled (with equal probability in all
directions) after t time units. Thus, regardless of the dimensionality, the expected
distance traveled increases with the square root of time. Berg (1993) provides a useful
compendium of results and biological applications of diffusion theory.

Foundations 7.2. Rates of encounter by molecular diffusion. A purely phys-
ical limit to the encounter rate between two molecules can be derived from diffusion
theory developed by Smoluchowski (1915), who independently of Einstein outlined a
number of the general principles of Brownian motion. We start by considering the
random diffusion of two spherical molecules, with respective radii ra and rb, moving
randomly through an otherwise homogeneous environment. A collision between these
two molecules will occur whenever their centers come within a distance rc = ra + rb
from each other. To simplify the overall analysis, one may then consider an imaginary
sphere around the center of either particle, with radius rc, whose overall surface area
4πr2c represents the entire boundary across which a flux of one particle or the other
constitutes a collision (Figure 7.9).

To proceed further, we require the total rate of particle movement, which is
determined by the sum of the diffusion coefficients associated with each particle type.
From Equations 7.4 and 7.5,

D = Da +Db =
kBT (ra + rb)

6πη(rarb)
, (7.2.1)

with units of cm2/sec, where kB is Boltzmann’s constant, T is the temperature (in
Kelvins), and η is the viscosity of the medium (see main text for the assumed values
of these parameters).
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To complete the derivation of the encounter rate, we require an expression for
the rate of diffusion across a planar surface. This is given by Fick’s first law, which
states that the flux rate of a diffusing substrate across a point is equal to the product
of the concentration gradient at that point and the diffusion coefficient. Here, the
concentration gradient can be approximated by treating the concentration inside the
sphere of radius rc as zero and denoting the bulk concentration (outside the sphere)
as [C], implying a concentration gradient of ([C]− 0)/rc and flux rate [C]D/rc. After
multiplying by the total surface area (4πr2c ) and dividing by the concentration, this
scales up to a flux rate per unit concentration of (4πr2c )(D/rc) = 4πrcD. Substituting
Equation 7.2.1 for D, we then obtain an expression for the encounter-rate coefficient,

ke = 4πrcD =

(
2kBT

3η

)(
(ra + rb)2

rarb

)
. (7.2.2)

After substituting for the average temperature of life (see main text) and the
viscosity of water at 20◦ C, this reduces further to

ke = (2.8× 10−12)

(
(ra + rb)2

rarb

)
, (7.2.3)

with units cm3· sec−1. (Note that if [C] is expressed in molar-concentration units,
then ke needs to be divided by 1000 to convert to liters and multiplied by Avogadro’s
number to convert to molecules, making the prefix 1.7 × 109). The product of this
encounter-rate coefficient and the concentrations of both particle types (each in units
of molecules/cm3) yields the expected number of collisions between the two particle
types in a 1 cm3 volume per second,

Re = ke[Ca][Cb]. (7.2.4)

For two spherical particles identical in size (ra = rb), as in the case of two
monomeric subunits forming a homodimeric protein, Equation 7.2.3 reduces to

ke ' 11× 10−12. (7.2.5a)

In this case, the rate coefficient is independent of the particle size because any increase
in target size is perfectly balanced by a reduction in the rate of diffusion. On the other
hand, if one particle type is much larger than the other, rb � ra,

ke ' (2.8× 10−12)

(
ra
rb

)
, (7.2.5b)

showing that the encounter rate depends only on the ratio of particle sizes, not on
their absolute sizes.

The encounter rates denoted by these expressions are sometimes referred to as the
Smoluchowski limits. They denote the encounter rate in the ideal situation in which
there are no attractive or repulsive forces between colliding particles, and otherwise
no barriers for diffusion through a homogeneous medium, any of which can become
important in various biological contexts.

Foundations 7.3. The Boltzmann probability distribution for alternative
molecular states. Numerous situations are encountered in cell biology where it is
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necessary to know the distribution of alternative states of the individual members of
a population of molecules, as these often determine the average rates and stochastic-
ities of cellular processes. Theoretical results in this area are generally derived from
the field of statistical mechanics, which takes a microscopic view of particle states
within a closed system assumed to be in thermodynamic equilibrium. There are nu-
merous ways to achieve the final result (e.g., Schroeder 2000; Phillips et al. 2012). The
route taken here uses the properties of combinatorics, along with a few mathematical
approximations.

The starting assumption is a system containing n molecules, which together har-
bor a fixed amount of energy, Σ. We assume discrete energy states, taking on values
of 0, ε, 2ε, . . . , kε, so N = Σ/ε represents the total number of discrete energy pack-
ets available to the system. Individual particles are free to change energy states, but
the overall probability distribution of alternative states remains constant under the as-
sumption of equilibrium. It is this equilibrium probability distribution that we wish to
determine, i.e., the probability that a random particle is in energy states i = 0, 1, . . . , k.
To accomplish this, we must account for the full distribution of the alternative states
that a set of n molecules can take on, conditional on their sum equaling N. Given the
large number of particles typically involved, this can be a dauntingly complex problem,
but a few mathematical tricks simplify the overall derivation.

We first note that the total number of ways that N packets of energy can be
partitioned among n molecules is given by

T (N,n) =
(N + n− 1)!

N !(n− 1)!
, (7.3.1a)

where ! again denotes the factorial function. To obtain this general result, note that
there are n bins within which N energy packets must be partitioned. The numerator
is the total number of ordered ways that N distinct packets can be randomly assigned
to n bins. But because the energy packets are all identical in content, the ordering in
which they are assigned is irrelevant, and the two terms in the denominator discount
the numerator to account for the redundancy associated with ordering of packets and
bins.

Now consider the situation where one specific molecule has energy iε, so there
are a remaining (N − i) packets to partition among (n − 1) molecules. Modification
of the previous expression then leads to

T (N − i, n− 1) =
(N + n− 2− i)!
(N − i)!(n− 2)!

. (7.3.1b)

Thus, the probability of a particle having energy content iε is

p(i) =
T (N − i, n− 1)

T (N,n)
= (n− 1) · N !(N + n− 2− i)!

(N − i)!(N + n− 1)!
. (7.3.2)

Further simplification is possible if it is assumed that the energy in the system is
substantial enough that N � n, which makes reasonable the approximations N !/(N−
x)! ' Nx, and n/(N+n) ' n/N. Noting as well that the number of molecules is large,
so that n− 1 ' n,

p(i) ' nN i · (N + n)−(i+1) ' n

N
· [1 + (n/N)]−i, (7.3.3a)

which further reduces to
p(i) ' n

N
· e−in/N , (7.3.3b)
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using ex ' (1 + x) for x � 1. Thus, what started as a complex problem reduces to a
relatively simple expression (a negative exponential distribution) under the assumption
of large numbers.

Letting E = Nε/n denote the average energy per particle, the preceding expres-
sion implies that the probability of a particle having energy state Ei = εi is

p(Ei) = C · e−Ei/E , (7.3.4)

where C is a normalization constant that ensures that the total probability distribution
sums to 1.0, satisfied in this case by C = 1/E. Letting E = kBT be the average energy
per particle yields the Boltzmann distribution,

p(Ei) = C · e−Ei/(kBT ). (7.3.5)

Note that the cumulative function for this exponential distribution, which defines the

probability of being in a state below Ei is 1− e−Ei/E .

Foundations 7.4. The yield of cellular biomass per ATP usage. Observations
in the final section of the main text allow for a crude estimate of the amount of energy
required to build new cellular material (in terms of ATP→ ADP hydrolyses), an issue
that will be addressed in more detail in Chapter 17. Here we will assume a relatively
high-energy carbon substrate with a heat of combustion of 9.3 kcal/g C (carbon), the
approximate value for most six-carbon sugars (including glucose). From Figure 7.8,
such a substrate leads to an expected 1.3 g DW (dry weight) produced/g C consumed,
or inversely (1/1.3) = 0.77 g C consumed/g DW produced. Multiplying by 9.3 kcal/g
C leads to an estimated cellular energy-intake requirement of 7.2 kcal/g DW produced.

How much of this required consumption is diverted to energy production for
cell functions? Surveys of multiple bacterial and eukaryotic species suggest average
caloric contents of 5.41 (0.05) and 5.13 (0.04) kcal/g cell DW (Supplemental Table
8.1), respectively. Assuming an average value of 5.3, this implies that of the 7.2
kcal consumed/g DW produced, 7.2 − 5.3 = 1.9 kcal (26%) must be used in cellular
processes required to produce new cellular material (with the rest of the substrate
providing carbon skeletons used in the construction of the monomeric building blocks
of the cell). Thus, ∼ 0.77× 0.26 = 0.20 g C of substrate must be converted to energy
in order to produce 1 g of cell DW.

What does this energetic investment mean in units of ATP, the cellular currency
of bioenergetics? One mole of glucose contains 72 g C, and assuming complete aerobic
metabolism, observations from biochemistry tell us that each mole of metabolized
glucose generates ∼ 32 mole of ATP (Chapter 17). This suggests that, in units of
ATP, the energetic requirement for the production of 1 g DW of cells is ∼ 0.20 g C
consumption × (1 mole glucose/72 g C) × (32 mol ATP/mole glucose) = 0.089 mole
ATP. It then follows that the yield of cells is ∼ 1/0.089 = 11.2 g DW/mole ATP. This
rough estimate is quite close to the average value of 10.5 for more direct estimates
found in a wide variety of organisms raised on a diversity of carbon substrates (Payne
1970).
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