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Cells vary widely in terms of shape, physiological properties, metabolic features, and
internal architecture. Of particular importance is cell size, which influences a myriad
of cellular features ranging from nutrient uptake to internal transport. Cell-size
variation among species is likely driven by a variety of selective forces, including size-
selective predators, buoyancy, resistance to flow dynamics, and osmotic pressure.
Among the most well-studied unicellular species, cell volumes vary by approximately
eleven orders of magnitude, 1073 to 10® um?, across the Tree of Life, with up to 107-
fold differences within major phylogenetic groups (Figure 8.1). By comparison, the
range in size between the smallest and largest mammals, a bumblebee bat vs. a blue
whale, is eight orders of magnitude. On average, prokaryotic cells are smaller than
those of eukaryotic species, but some eukaryotes have cell volumes smaller than the
average bacterium.

There are a few striking exceptions at the large end of the scale not shown in
Figure 8.1. For example, the unicellular green alga Acetabularia is up to 10 c¢m in
length and contains just a single nucleus, but has a complex architecture similar
to that of a vascular plant. A multinucleate green alga Caulerpa produces com-
plex holdfasts, stalks, and fronds up to meters in length, despite being unicellular.
Gromia sphaerica, a testate amoeba that lives on marine sediments at depths of
> 1 km, produces cells up to 4 cm in diameter. There are also giant bacteria. The
marine-sediment bacterium Thiomargarita magnifica approaches 10?2 ym? in size,
and Epulopiscium, a gut symbiont associated with surgeonfish, has a volume well
over 10° pym3.

Cell size is a major organizing factor in biology, with a wide array of cellular
features scaling in predictable size-dependent manners. Not all such relationships
are linear, but they often unfold in ways that transcend the boundaries between
major phylogenetic groups, even between prokaryotes and eukaryotes. Commonly
called “laws of nature” or “rules of life,” such patterns identify strict limits on what
evolution has been able to achieve in the natural world. What accounts for the empty
regions in phenotypic space? Are missing combinations of trait values a consequence
of biophysical and/or biochemical constraints, or are certain combinations simply
too disharmonious to be promoted by selection, or do both factors play a role?

The most notable of cell biology’s scaling laws define the ways in which bioen-
ergetic features relate to cell volume. These constitute the primary subject matter
of the following pages, although numerous relationships for other types of traits will
be explored in subsequent chapters. The focus here is on the evolutionary scaling
of traits with size across species. There are equally compelling questions regarding
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scaling relationships on nonevolutionary timescales (Marshall 2020), e.g., cellular
responses to nutritional status, temperature, and other physical/chemical factors.
Ultimately, we wish to know whether long-term evolutionary trajectories reflect
within-species developmental responses to the environment. These issues will start
to be addressed in the following chapter.

Before proceeding, a simple overview of the ways in which scaling laws are ex-
pressed and interpreted mathematically is in order. Using this framework, a number
of general scaling relationships regarding energy acquisition and growth will then
be summarized. This will be followed by an overview of the possible evolution-
ary mechanisms driving such patterns and their implications for understanding the
consequences of the prokaryote-eukaryote transition.

Describing Allometric Relationships

The description of a scaling relationship between two traits demands a statistical
approach, as the twin goals are generally to quantify the average pattern and degree
of noise in the response of one trait to a change in the other. The relationship may
be positive or negative, but provided a proportional change in one trait is associated
with a constant proportional change in the other, the model can be succinctly written
in the form of a simple, two-parameter power function,

z=aS" te, (8.1a)

where in this case z is the measured phenotype of interest, S is a measure of organism
size (usually mass or volume), « is the fitted normalization constant (giving the
expected value of z when S = 1), and 3 is the fitted scaling coefficient. Equation
8.1a indicates that, on average, a two-fold change in S is associated with a 2°-fold
change in z. The e term in Equation 8.1a is usually left out of such expressions (and
will be from here on), but is nonetheless relevant, as it is the deviation between
observed and predicted values. With appropriate statistical analysis (below), the
average value of e is zero, and the magnitude of the variance of e is a measure of
the goodness-of-fit of the data to the model.

There is an elegant simplicity to power functions, as they exhibit linear form
when z and S are jointly transformed logarithmically. On a log scale, Equation 8.1a
becomes

log(z) = log(a) + Blog(9), (8.1b)

providing a simple basis for estimating the parameters « and 8 with linear-regression
analysis. The model is linear regardless of the logarithmic scale employed, e.g., base
10 as generally used here (denoted as log), or on the scale of natural logarithms (base
e ~ 2.318, denoted as In). First popularized by Thompson (1917) and Huxley (1932),
power-function scalings in biology are generally referred to as allometric functions,
with 8 = 1 denoting an isometric relationship. If g is positive but < 1, then 2
becomes proportionally smaller with increasing S (sublinear or hypometric scaling),
as z/S = aS?/S = aS”~!, with the exponent B — 1 being negative. In contrast, g > 1
implies supralinear or hypermetric scaling.

As will be seen below, cell biology is well-endowed with features that are rea-
sonably described by Equation 8.1b as a first-order approximation. In principle,
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although rarely relied upon, more complex functions are possible. For example, 3
could be a function of S. It should also be noted that the scales on which biological
traits are measured are generally arbitrary, e.g., pH is measured on a log scale. Even
when a particular measure does not strictly adhere to the form of Equation 8.1a, a
variety of mathematical transformations to a new scale can often lead to behavior
consistent with the simplest power-law form (Lynch and Walsh 1998; Frank 2016).

Regressions of trait values on organism size with slopes approximating multiples
of 1/3 are particularly intriguing, as they raise the possibility of simple geometric
explanations. For example, when S is on the scale of mass or volume, 8 = 1 suggests
a mechanism directly proportional to the mass of cellular material, 8 = 2/3 suggests
a mechanism related to surface area (because area is a function of the square and
mass is a function of the cube of a length measurement), and g = 1/3 suggests a
mechanism related to a linear dimension of the organism. As early investigators
found numerous regression coefficients to be in the neighborhood of z/3 (where x is
an integer value, usually 2 or 3), there was a tendency to assume they were exactly
z/3 and then embark on proposals of mechanistic explanations for the observed
patterns.

Even at an early stage in these kinds of studies, discomfort was expressed with
the generality of various geometry-based hypotheses (e.g., von Bertalanffy 1957),
although the tradition of searching for them continues today, with a tendency to
view significant deviations as little more than annoying secondary effects. As will
be discussed below, much attention has been given ideas associated with fractal
delivery systems that suggest allometric coefficients of the form /4 rather than z/3.
In light of the usual uncertainties in statistical analyses, however, it is often hard
to justify one of these scalings versus the other when confronted with real data. Is,
for example, an estimated coefficient of 5 = 0.29 more consistent with 1/3 ~ 0.33 or
1/4 = 0.25 scaling, or should the strict adherence to either belief be avoided?

Scaling Laws in Cellular Bioenergetics

The vast majority of work on biological scaling relationships has been performed by
ecologists striving to understand the basic energetic features of ecosystems, often
with a focus on multicellular taxa (e.g., Burger et al. 2019; Hatton et al. 2019).
Here, our attention will be confined to the attributes of species that normally live
as single cells, although as discussed in Chapter 24, there are intriguing extensions
of the results for unicellular organisms to multicellular lineages. Several power-law
scalings of biological features with cell size were encountered in Chapter 7 — the
slightly less than linear proportionality between cell dry weight and cell volume;
the decline in the fractional contribution of DNA to total cellular biomass with
increasing cell size; and the sublinear scaling of the number of mRNA and protein
molecules per cell with cell volume.

Strong correlational patterns imply strong constraints, and a key challenge for
evolutionary cell biology is to determine their mechanistic basis. At least three
classes of explanations always merit consideration: 1) inevitable outcomes of bio-
physical / biochemical limitations; 2) consequences of evolutionary channeling to-
wards particular combinations of trait values that maximize fitness; and/or 3) re-
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flections of drift barriers beyond which the efficiency of selection is compromised
(Chapter 4).

Metabolic rate. In any discussion of size scaling of biological traits, it is appro-
priate to start with metabolic-rate data, as no trait has been more widely measured
phylogenetically. In a statement that quickly became canonized as “Kleiber’s Law,”
Kleiber (1932, 1947) argued that the total metabolic rate of an organism (typically
measured as the rate of oxygen consumption) scales as the 3/4 power of body mass.
His original analyses were largely derived from observations on vertebrates.

Although considerable subsequent research has led to a substantially altered
view, West et al. (1997, 1999, 2002) have promoted the idea that quarter power-law
scalings constitute universal laws relevant not just to metabolic rate but to a wide
array of organismal features across the entire Tree of Life. The novelty of their
work derives from a mechanistic view of fractal delivery systems (e.g., hierarchical
branching networks of capillaries or leaf veins) for nutrients and respiratory gases.
However, these details will not be pursued here for several reasons. First, it is
unclear how the features of a branching delivery network would apply to single cells.
Second, a number of questionable mathematical assumptions underlying the fractal
models have been highlighted (Dodds et al. 2001; Banavar et al. 2002; Kozlowski
and Konarzewski 2004, 2005; Chaui-Berlinck 2006; Apol et al. 2008), and remain
despite the originators’ valiant efforts to dispute them (Brown et al. 2005; Savage
et al. 2007). Third, although a study with protists yielded a power-law relationship
with an exponent quite close to the theoretical prediction of 3/4 (Fenchel 2014), such
behavior is a simple consequence of cells evolving flatter forms as species increase
their average cell volumes, and is thus explainable with a surface-area constraint
model. Although discrepancies with the 3/4 rule have been made repeatedly (Dodds
et al. 2001; Kozlowski and Konarzewski 2005; Glazier 2015a,b), the universality of
3/4 power-law scaling continues to be promoted (West 2017).

Not only is the allometric coefficient for metabolic rate often inconsistent with
x/4 power-law scaling, but taken across the Tree of Life, the regression appears to
be nonlinear (Zeuthen 1953). For example, with cell dry weight being the measure
of size, DeLong et al. (2010) found the allometric slope for metabolic rate to be ~ 2.0
for heterotrophic bacteria and ~ 1.1 for unicellular eukaryotes. The same scaling was
found whether cells were active and well-nourished or inactive and starved. Using
updated cell size measurements, the allometric slopes for the two groups are more on
the order of 1.3 and 1.0 (Figure 8.2). However, the two estimates are not significantly
different, and although there is little overlap in cell sizes between the two groups,
a hypothesis of complete continuity of scaling across both groups cannot be ruled
out. Assuming an isometric relationship for eukaryotic cells, the data in Figure 8.2
imply a simple relationship, with a mean metabolic rate ~ 22 nLl. Oy uptake / pg
cell dry weight / day (at 20° C). Using a much smaller data set based on a mixture
of just eight heterotrophs and phototrophs grown at a much colder temperature (5°
C), Johnson et al. (2009) again observed an isometric relationship, and suggested
a universal constant equivalent to 82 nL O, uptake / ug cell dry weight / day.
This discrepancy is not too surprising given that the range of variation around the
regression in Figure 8.2 exceeds an order of magnitude.

Finally, although metabolic rate is a classical physiological measurement, read-
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ily estimated as the rate of oxygen consumption or heat dissipation, its cell biological
interpretation is generally far from clear. Total metabolic-rate measurements quan-
tify the burning of carbon sources, but taken alone provide little information on the
extent to which energy is converted to biomass production (growth and reproduc-
tion), the key targets of natural selection. Given the average constancy of the rate of
energy utilization per unit mass noted above (independent of cell dry weight), were
metabolic rate to be somehow proportional to the rate of biomass production, cell-
division rates would also be expected to be nonresponsive to cell size. As discussed
below, however, this expectation is far from fulfilled.

Lifetime energy requirements of a cell. Natural selection advances adapta-
tions that enhance an organism’s energetic capacity, either directly via growth and
reproduction or indirectly via survivorship. However, adaptations themselves incur
baseline construction and maintenance costs, and unless the benefits are sufficiently
greater than the energetic costs, in the long run they will be opposed by natu-
ral selection. Furthermore, to understand the capacity of selection to incorporate
adaptive modifications, we need to scale the net energetic costs and benefits rela-
tive to the total cellular energy budget (the summed costs of cell construction and
maintenance per cell lifetime), as this defines the visibility of trait modifications to
selection. If the relative benefits do not sufficiently outweigh the costs, the trait will
be liable to loss as selection is overwhelmed by the power of random genetic drift
and deleterious-mutation accumulation (Chapters 6 and 17). If the costs sufficiently
outweigh the benefits, loss will be actively promoted by selection.

The total cellular energy requirements per cell cycle partition into components
associated with: 1) baseline maintenance and survival; and 2) construction of the
essential parts of daughter cells (for growth and reproduction). Maintenance needs
include energy invested in mRNA and protein processing, osmoregulation, intracel-
lular transport, signal transduction, motility, and DNA repair. As the length of the
cell cycle is prolonged, e.g., owing to resource limitation, the total maintenance re-
quirements per cell cycle will grow approximately linearly with the cell-division time,
whereas the contribution involving the construction of new parts (a roughly one-
time investment) will remain approximately constant. As a consequence, the total
lifetime energetic requirements of a cell (from birth to fission) will typically increase
as growth conditions decline, eventually reaching a critical point where resources
are just sufficient for maintenance (with nothing left for allocation to reproduction).

A powerful empirical approach allows the partitioning of the energy associated
with the maintenance and growth requirements of single-celled organisms. The
method relies on estimates of the consumption rate of an energy-limiting resource
at different cell-division rates (Foundations 8.1). For cells that can be grown on a
defined medium in a continuous-flow chemostat (Figure 8.3), the rate of resource
consumption per cell can be estimated from the difference in resource concentration
between the inflow and outflow, the known cell density (which reaches an equilibrium
in the growth chamber), and the flow rate. Different food resources vary in their
energetic content, requiring a normalization of results across studies. However,
conversion of resource consumption to units of ATP yield (the universal energy
currency of cells) is readily accomplished if the metabolic pathways through which
the substrate passes are known (Tempest and Neijssel 1984; Russell and Cook 1995).
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The elegance of a continuous-flow culture is that an equilibrium cell-division rate
is rapidly achieved, which is simply equal to the dilution rate of the chemostat. If
the rate of resource consumption per cell is determined at several cell-division rates,
a plot of the former vs. the latter is expected to yield a straight line, with the slope
providing an estimate of the amount of resource consumed to produce a new cell,
and the intercept (denoting the point at which resource consumption is insufficient
to support growth) providing a measure of baseline metabolic requirements (Figure
8.3). Pioneered by Bauchop and Elsden (1960), this regression approach is often
called a Pirt (1982) plot.

The general procedure has been applied to enough organisms to reveal some
broad generalizations (Figure 8.4). First, the basal metabolic rate (normalized to a
constant temperature of 20°C for all species) scales almost linearly with cell volume
across both bacteria and eukaryotes, with an allometric relationship of

Cp = 0.39V 088, (8.2a)

where C) is in units of 10° molecules of ATP /cell/hour, and cell volume V is in
units of pm3. Care should be taken in the literal interpretation of Cj;, as metabolic
requirements of cells depend on their growth rates, and some maintenance activities
can be strongly correlated with growth and hence reside in the estimated component
for construction costs (van Bodegom 2007; Biselli et al. 2020).

Second, the scaling of the growth requirement per cell is even closer to linearity
with respect to cell volume (i.e., with an exponent near 1.0),

Cg = 26.9V 09, (8.2b)

where Cg is in units of 10° molecules of ATP /cell. If one further considers that a
portion of eukaryotic cell volume is associated with vesicles and therefore relatively
inert biologically, the regressions on active (or “effective”) cell volumes might yield
modified allometric scaling coefficients. Unfortunately, little information is available
on the scaling of vacuolar volume with total cell size, although an analysis for pho-
tosynthetic cells suggests ~ 89% active volume for a 1-um? cell, declining to ~ 58%
for a 10*-pm3 cell (Okie 2013). Such extremes are unlikely in heterotrophic species.
The total cost of building a cell is

Cr ~Cq+tpCyuy, (8.2C)

where tp is the cell-division time in hours. The relationships in Equations 8.2a,b
then imply that provided ¢tp < 67V hours (assuming 20°C), which is generally the
case in well-nourished cells, the contribution from cell growth dominates.

The preceding relationships will prove useful in subsequent chapters where at-
tempts are made to determine the costs of various cellular features relative to a
cell’s entire energy budget. In Foundations 8.2, an entirely different approach to the
problem, applicable to organisms that cannot be readily assayed in chemostats but
for which metabolic-rate data are available, is shown to yield results that are quite
compatible with Equations 8.2a,b.

Notably, both the maintenance and growth relationships scale in an apparently
continuous fashion across bacteria and eukaryotes, despite the substantial difference
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in cell contents between the groups. On the one hand, eukaryotic cells contain
internal lipid membranes, which are energetically expensive, but on the other hand,
such cells are less densely packed with biomaterials (Chapter 7).

Finally, although almost all studies on scaling relationships in biology focus on
the slopes of the regressions, an equally important matter concerns the magnitude
of the normalization constant. Why for example is the cost of growth of a 1-yum?
cell ~ 3 x 1019 ATP hydrolyses (Equation 8.2b), and not substantially more or less?
A crude calculation suggests that this is largely a consequence of biology’s reliance
on ATP as an energy source and the energetic content of the biomaterials from
which cells are built. From Milo and Phillips (2016), under average physiological
conditions ~ 14,300 calories (cal) are released per mol of ATP hydrolyses, which
translates into 2.4 x 1072° cal/individual hydrolysis event. From a wide variety of
sources, the energetic content of unicellular organisms is 4.7 x 1076 cal/ng dry weight
(Supplemental Table 8.1). Using these results, and converting to cell volume with
the relationship in Figure 7.1, leads to an estimated cost of cell construction of
~ 114 x 10° ATP hydrolyses/um? cell volume, which is within a factor of four of the
actual estimate based on elaborate work on resource consumption (Equation 8.2b).

Thus, the energetic cost of building cells is a historical legacy of the kinds of
biomaterials (e.g., nucleic acids, proteins, and lipid membranes) that life has been
dependent upon since the establishment of LUCA. The deeper question as to why
life came to depend on ATP as a universal material for energy exchange remains
unresolved.

The speed limit on cell-division rates. Natural selection feeds off of genotypic
differences in rates of genome transmission on an absolute time scale. Thus, fitness
ultimately depends not just on the rate of resource acquisition, but on the rate
at which assimilated resources are transformed into new cells, as opposed to being
burned in nonproductive activities. Thousands of studies have been performed on
the growth rates of various species under a multitude of conditions, but given the
diversity of approaches, the only fair comparison is to evaluate maximum known cell-
division rates. Even then, the data must be normalized to a constant temperature
(as the latter influences all aspects of biology; Chapter 7), and there is no guarantee
that studies on any particular species have actually uncovered the optimal growth
conditions.

With these caveats in mind, although the observations just discussed indicate a
near constant energy cost of cells per unit volume across the Tree of Life, the rate at
which biomass is constructed is far from constant. Most notably, the evolutionary
relationship between maximum cell-division rate and cell size (in units of dry weight
per cell) is qualitatively different between heterotrophic bacteria and eukaryotes
(Figure 8.5a). Here, the growth rate is measured as the maximum exponential rate
of expansion by., = In(2)/tp, where tp is the average cell-division time (in days).
For bacteria, the scaling of this trait with cell size is positive, with an allometric
coefficient of 0.28 (SE = 0.07). Although there is a more than 10x range of variation
in cell-division times for any specific cell size, this is in part due to sampling error.
Thus, bacteria certainly do not adhere to the idea that large cells suffer from reduced
rates of cell division as a result of a surface area:volume constraint (below).

In contrast, unicellular eukaryotes universally exhibit weak, negative scaling of
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maximum growth rate with cell size. For amoeboid forms, ciliates, a broad group
of heterotrophic flagellates, and dinoflagellates, the allometric scaling coefficients
fall in the narrow range of -0.19 to -0.22. Despite this uniform scaling over six
orders of magnitude of cell-size differences, the elevation of the power-law functions
vary among groups, with ciliates having the highest growth rates and flagellates the
lowest.

Unfortunately, there is very little overlap in the sizes of bacterial and eukaryotic
cells in these analyses of heterotrophs. Thus, it is unclear whether the observed shift
in scaling behavior is a consequence of fundamental biological differences between
groups or a reflection of a more general scaling relationship, with a global optimum
size for cell-division rates on the order of 107 ug (fortuitously near the approximate
size boundary between prokaryotes and eukaryotes). Although it may seem puzzling
why all bacteria don’t evolve to very large sizes and all unicellular eukaryotes to very
small sizes, it should be remembered that total fitness is determined by the difference
between birth and death rates, and that the optimum size for survivorship may differ
greatly among environments.

Do these observations generalize to phototrophs? In general reviews of marine
phytoplankton, Raven (1986, 1994) argued, with fairly limited data, that there is
a reversal in the scaling of cell-division times at a cell volume of ~ 30 pum?, which
equates to an approximate cell dry weight of 1075 ug, close to the area of overlap
in size of bacterial and eukaryotic heterotrophs in Figure 8.5a. However, although
a similar argument was made by Maranon (2015; Maranon et al. 2013; Ward et al.
2017), the broader comparative analysis in Figure 8.5b does not support this sort of
nonmonotonic scaling for phototrophs. There is no relationship between by, and
cell size in cyanobacteria, and for the two eukaryotic groups with data on several
dozens of species, green algae and diatoms, the allometric scaling coefficient is —0.09,
which is about half that found for heterotrophs.

It bears emphasizing that the cell-division rates summarized in Figure 8.5 are
all derived from pure cultures grown under optimized laboratory conditions. In
nature, organisms may rarely if ever experience such conditions, commonly dividing
at least one to two orders of magnitude more slowly than maximum rates. Indeed,
many microbes inhabiting aquatic sediments may have generation times on the order
of several years, and in some cases even hundreds to thousands of years (Hoehler
and Jgrgensen 2013; Morono et al. 2020). In principle, such cells may often enter
semi-dormant states with maintenance requirements orders of magnitude lower than
those implied in Figure 8.4 (Munder et al. 2016; Lennon et al. 2021).

To sum up, the preceding results permit three fairly general statements about
the biology of cells. First, in both eukaryotes and bacteria, absolute rates of biomass
acquisition / cell increase with cell size. This follows from the fact that the energetic
requirement for growth scales nearly linearly with cell volume, i.e, as ~ V9. (Figure
8.4), while cell-division times (the inverse of the division rate) scale much more
weakly and even negatively with V in the case of bacteria (Figure 8.5). For both
bacteria and eukaryotes, the absolute rate of production per cell increases with cell
size, but it does so supralinearly with size in bacteria (because the cell-division
time declines with size) but sublinearly in eukaryotic cells (because the cell-division
time increases weakly with size). On the other hand, the rate of productivity per
unit biomass, byax, Which is more directly related to fitness, changes directionality
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between groups, being positive in bacteria but negative in eukaryotes, yielding the
pattern in Figure 8.5a.

Second, returning to the results in the previous section, insight can be gained on
the efficiency of conversion of assimilated energy into growth, Cs/Cr. The lifetime
cellular energy budget (Cr) is a function of the cell-division time, tp, as Cr =
Cg + tpCn (Equation 8.2¢). Using the quantitative expressions for Cg (the cost of
growth) and Cy, (the cost of maintenance/day) as functions of cell volume (V) in
Equations 8.2a,b, and defining ¢p in units of days,

1

Cq/Cp ~ .
a/Cr 1+ 0.35t, 1/ —0-08

(8.3)

Recalling from above that tp = In(2)/bmax, noting from the regression in Figure 8.5
that bacterial by, ~ 527B%2%, where B is the dry weight per cell in ug, and using
Equation 7.1 to express B in terms of V, leads to tp ~ 0.055V =926, Substitution
of the latter expression into Equation 8.3 then leads to growth-efficiency estimates
ranging from 0.92 to 0.99 for the range of bacterial cell volumes of 0.01 to 10 pm3.

Thus, for bacterial cells growing at maximum rates, the vast majority of as-
similated energy is allocated to growth, increasingly so in cells of larger size. With
poorer growth conditions (larger ¢p), these efficiencies will necessarily decline. For
example, with a tenfold increase in ¢p, the corresponding efficiencies become 0.79
to 0.92, and with a 100-fold increase in tp, they reduce to 0.10 to 0.54. Thus, a
lower limit to bacterial cell size arguably results from the progressive increase in
the fraction of energy intake that must be devoted to maintenance in the face of a
relatively long cell-division time (Kempes et al. 2012).

Growth efficiencies are somewhat lower for eukaryotic cells. For heterotrophic
eukaryotic flagellates, including dinoflagellates, growing at maximum rate, tp ~
0.18V917 days, efficiencies decline from 0.93 to 0.83 for cell volumes of 10 to 10 ym?.
For amoeboid forms, the minimum cell-division time is tp ~ 0.094V°-1? days, leading
to a range for Cq/Cr of 0.95 to 0.84 for cell volumes of 100 to 10® ym3. For ciliates,
tp =~ 0.036V%20 days, and Cg/Cr ranges from 0.97 to 0.92 for cell volumes of 10? to
107 pm?. Thus, as in heterotrophic bacteria, when experiencing maximum growth
capacity, most eukaryotic cells incorporate > 90% of assimilated energy into growth
vs. maintenance, although the scaling of efficiency with cell volume is negative.

A final noteworthy point is that the upper halves of the dashed ellipses in Figure
8.5a demarcate apparent absolute upper-bounds to cell-division rates (normalized to
20°C) that natural selection has been able to achieve. For heterotrophic eukaryotes
at this temperature, no cell divides in < 1.7 hours, and no cell > 1 ug in dry weight
divides in < 8 hours. No phototroph of any size, bacterial or eukaryotic, divides in
< 4 hours at 20°C. On the other hand, at the same temperature, some large bacterial
heterotrophs can divide in just 15 minutes.

Can these upper limits be broken? When strong and prolonged periods of se-
lection are imposed on growth rate in simple laboratory experiments with microbes,
there can be an up to 30% increase in by, €.g., in the bacterium E. coli (Wiser et
al. 2013), the yeast Kluyveromyces (Groeneveld et al. 2009), and the ciliate Tetrahy-
mena (Tarkington and Zufall 2021). Thus, natural selection appears to be somewhat
stalled with respect to maximum growth rates, possibly because the strength of se-
lection on maximum rates in nature is weaker than in laboratory settings where a
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premium can be put on this single trait. Although it might be argued that there is
a tradeoff between growth rate and competitive ability, the limited data in microbes
suggests otherwise (Gounand et al. 2016).

The Limits to Natural Selection Imposed by the Drift Barrier

The classical dogma in physiological ecology is that scalings of bioenergetic features
are unavoidable constraints of biochemistry and/or biophysics. As outlined in detail
by West (2017), numerous arguments based on organism size lead to power-law
behavior with exponents being multiples of 1/3 or 1/4 depending on one’s mechanistic
perspective. However, although such hypotheses are based on what may appear to
be reasonable arguments, the inferred supportive evidence almost always derives
from statistical analysis of patterns rather than on direct experimental evidence of
mechanistic constraints. Moreover, as noted above, a more fundamental problem
is that neither 1/3 nor 1/4 power-law scalings provide general explanations for the
phylogenetic patterning of bioenergetic traits in unicellular organisms.

Most striking are the opposite directions of scaling of maximum growth rate
and efficiency with cell size in bacteria vs. eukaryotes. For bacterial growth rates,
the scaling is positive, although the data are noisy enough that the true exponent
could be anywhere in the range of 0.14 to 0.42. In contrast, the scaling exponents
for individual heterotrophic unicellular eukaryotic groups are not only negative,
but more compatible with —1/5 than either —1/4 or —1/3 power-law scaling. For
phototrophs, the growth-rate scaling exponent is even weaker than —1/5, being closer
to —1/10.

This lack of robust support for biophysical-constraint hypotheses suggests a need
to evaluate the problem of growth-rate scaling from an entirely different perspective.
Shifting the view from biophysical constraints to limits on the evolutionary process,
one possibility is that with increasing cell size, the efficiency of natural selection
declines, owing to the associated reduction in effective population size (N.). The
intention here is not to promote the idea of precise 1/5 (or 1/10) power-law scaling
relationships. Further empirical study of the distribution of mutations with small
effects in various phylogenetic lineages will be necessary for that level of resolution.
The key point is that any reduction in N, will diminish the ability of natural selection
to purge deleterious mutations, thereby leading to a reduction in trait performance.

If this hypothesis is correct, arguments that attempt to explain scaling patterns
across the Tree of Life purely on the basis of cell-geometric arguments will be in-
complete, if not entirely misplaced. If, on the other hand, it could be shown that
the population-genetic environment has no influence on scaling relationships, this
would imply that the structure of cell biology is such that there is always a supply
of mutations with sufficiently large, variable, and beneficial effects to bring things
to their biophysical limits regardless of phylogenetic affinity.

Recall from Chapter 4 that the key determinant of whether natural selection
can eradicate a deleterious mutation with effect s is whether the ratio of the power of
selection to the power of drift s/(1/N.) = N.s exceeds 1.0. The fact that N, scales with
the —0.20 power of organism size (Figure 4.3) implies that species with larger cell
sizes have reduced capacities to promote growth-rate promoting mutations and to
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eradicate growth-rate reducing mutations of small effects. As noted in Chapter 5 and
further elaborated on in Chapter 17, the evidence is compelling that a large fraction
of mutations have fitness effects (s) below |s| = 107°, extending down to 10~1° or even
lower in species with larger cell sizes. Because N, in unicellular species is typically
in the range of 10° to 10° individuals, this means that a substantial number of
mutations with individually very mildly deleterious (i.e., growth-reducing) effects
are free to accumulate in species with relatively small N, while still being subject
to efficient purging in larger-N, species.

As discussed in Chapter 4, several genetic features determine how the efficiency
of selection against mildly deleterious mutations scales with the demographic fea-
tures of a population. These are evaluated in a stepwise fashion in the next few
paragraphs to show how the progressive incorporation of natural genomic features
can plausibly lead to the kinds of negative scaling seen in Figure 8.5.

The simplest starting point assumes that selection operates on individual genetic
loci independently of events occurring at other genomic locations. This requires ei-
ther very high recombination rates or such small population sizes that cosegregating
variants are never simultaneously present at multiple loci. Consider the situation
in which each locus harbors two possible alleles, + (beneficial) and — (deleterious),
with the mutation rates from + to —, and vice versa, being uio and wug;, and the
+ allele having advantage s. At small enough population sizes that N.s < 1, the
long-term average frequency of the favorable + allele is simply a function of the
ratio of mutation rates, ugi/(up1 +u19), but as the condition N,s > 1 is approached,
the increased efficiency of selection drives the mean frequency to 1.0 (Figure 8.6a).
Under this model, the transition between these two extremes occurs in a narrow
(order of magnitude) range of N.. Thus, this simple model is inadequate to ex-
plain a consistent scaling of mean performance across several orders of magnitude
of population size.

Suppose, however, that there are multiple, completely linked loci with the same
mutational and selection properties, with a haplotype’s growth rate being deter-
mined in an additive fashion (proportional to the fraction of loci occupied by +
alleles), and fitness being defined by a multiplicative (independent effects) model,
(1 —s)™ ~ e " where n is the number of — alleles. In this case, it can take as many
as five orders of magnitude of N, to span the full range of equilibrium mean growth
rate (Figure 8.6b). This shift in behavior is a consequence of selective interference
among simultaneously segregating mutations, as described in Chapter 4. For popu-
lations of moderate size, there will be genetic variation among individuals in terms
of the total number of + alleles harbored across loci, the result being that many
new beneficial mutations will arise on suboptimal genetic backgrounds destined to
eventual loss. At the largest population sizes, however, selection still keeps dele-
terious alleles at very low frequencies at all genomic sites, reducing the effects of
background interference.

A third issue to consider is that fitness effects will vary among genomic sites,
with sites with large effects likely being much rarer than sites with small effects
(Chapter 5). This further flattens the scaling of mean trait performance with organ-
ism / population size. Even with free recombination, such behavior results because
the sites with progressively smaller effects require increasingly high N, for selection
to promote their favorable alleles. As a consequence, the equilibrium mean perfor-
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mance will be a mixture of the responses found for the fixed-effects model. This can
be observed as the stepwise increment in mean performance in Figure 8.6¢ where
there are sites with just three different effects, but a smoother transition would arise
with a more continuous distribution of site effects.

Finally, Figure 8.6d considers the situation in which different types of sites are
completely linked. In this case, as a site with major effects becomes surrounded by
increasing numbers of minor-effect sites, there is again a progressive decline in the
rate of scaling of mean performance with N,.. Increasing numbers of minor-effect
loci cause increased background interference for selection operating on major-effect
sites, while also contributing more to the total maximum performance of the trait
(diluting the overall influence of the major-effect sites).

Without a detailed understanding of the fine-scaled distribution of genomic
sites with different magnitudes of mutational effects, a precise statement cannot be
made on the expected scaling relationship between mean performance and N,, other
than that it should be negative. This might be viewed as a short-coming of the
theory. However, it should be recalled that virtually all biophysical explanations
simply adhere to the assumption of a fixed power-law relationship, even when the
latter can be shown to be not generalizable. The main limitation of the drift-barrier
hypothesis is not an absence of generalizable theory, but a lack of precise information
on mutations with small effects.

For a trait like growth rate, it can be expected that essentially every genomic
site influences performance in at least a small way, and that there will be consider-
able variation among nucleotide sites in terms of average effects and recombination
rates. Thus, because the plotted theoretical results encompass a wide range of plau-
sible genetic properties, it is clear that there is little justification for ignoring the
possibility that the variation in the population-genetic environment plays a signif-
icant role in defining relationships between maximum performance, organism size,
and N,.. For this not to be the case, all deleterious mutations would have to have
effects smaller than the smallest 1/N, (from Figure 4.3, on the order of 107?), and
hence to be impervious to selective removal in all organisms, and/or larger than the
largest 1/N. (on the order of 107%), and hence impervious to fixation across the Tree
of Life. It is highly implausible that no mutations would have fitness effects in the
range of 107% to 1074,

What can be said is the following. For heterotrophic eukaryotes, both b,,., and
N, scale with the -0.2 power of body mass, which means that species-specific byax
is directly proportional to N.. Thus, for every fractional decline in N, there is an
equal fractional decline in by.,, and this is consistent over the entire span of N..
For this to occur, within the window of mutations with selection coefficients in the
range of 1072 to 107, there must be an inverse relationship between the number
and effects of mutations, such that the product remains constant over this full range
of s.

To see this, note that for the interval of N, between 10* and 10°, there will be
an interval of deleterious mutations with s in the range of 1075 to 10~* that are
vulnerable to fixation by drift, but would be efficiently purged by natural selection
for N, > 10°. Likewise, for the interval of N, between 10° and 109, there will be
an interval of deleterious mutations with s in the range of 1076 to 10=° that are
vulnerable to fixation by drift, but would be efficiently purged by natural selection
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at N, > 10% and so on. Thus, for the interval-specific decline in by, to remain
constant across N, the number of relevant mutational effects in each interval must
be inversely proportional to the effects, such that the product remains constant.
Such a negative exponential distribution of fitness effects is at least qualitatively
compatible with what we know about the subject within various species (Chapters
5 and 17). It should be noted, however, that the concern here is with the cross-
phylogeny balance of load-creating mutations, with the total load of mutations with
effect s ~ 1/N, remaining approximately constant as N, changes across lineages.

Owing to insufficient information on N, in phototrophs, this type of argument
cannot be quantitatively extended to this group, although the exact argument would
apply if N. happened to scale with the -0.1 power of body mass in phototrophs.
There is a similar lack of information on the scaling of N, with cell size in prokaryotes.
However, given that b, increases with cell size in bacteria, and assuming that N,
scales negatively with cell size (as in eukaryotes), the drift-barrier hypothesis cannot
explain the size-specific growth scaling in bacteria. The possibility is then raised
that adaptive evolution in bacteria is typically nearly invulnerable to compromises
resulting from drift. Assuming an upper limit to N, ~ 10%, this would require that
the vast majority of deleterious mutations in such species have s > 1079, as suggested
in Chapter 5.

Membrane Bioenergetics and the Prokaryote-Eukaryote Transition

As noted in Chapter 2, a peculiar feature of cell biology is the localization of the
key machinery associated with energy production to lipid bilayers. The series of
complexes known as the electron transport chain (ETC) couple the extraction of
electrons from the oxidation of organic compounds to the export of hydrogen ions,
maintaining a concentration gradient of the latter across the membrane. The bio-
chemical details of this process are covered in all biochemistry texts, and will not
be elaborated upon here. The salient issue is that the cross-membrane gradient in
hydrogen-ion concentration driven by the ETC causes chemiosmotic pressure for
the return movement of hydrogen ions through membrane-embedded ATP synthase
complexes, which couple this mechanical energy to the production of ATP (Chapter
2). One of the key differences between prokaryotes and eukaryotes is that in the
former all of these events take place on the inner cell membrane, whereas membrane
bioenergetics has been relocated /restricted to the inner membranes of mitochondria
in eukaryotes (where they would have been present from the outset in the primordial
mitochondrion; Chapter 23).

Under the assumption that energy production is limited by the number of ATP
synthase complexes, which in turn are assumed to be limited by the availability
of plasma membrane-surface area, Lane (2002, 2015, 2020; Lane and Martin 2010)
argued that the endosymbiotic establishment of mitochondria freed eukaryotes of
this constraint by providing effectively unlimited inner mitochondrial membranes.
This assertion led to the further claim that the energetic boost made possible by
mitochondria constituted a watershed moment in evolution by generating excess
power essential to all things associated with eukaryogenesis. Under this view, the
mitochondrion is not simply one of the many unique features of eukaryotes. Rather,
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it is the key feature that enabled the evolution of internal cell structure, large cell
size, expanded genomes, multicellularity, sex, behavior, etc., all of which are viewed
as hallmarks of organismal superiority.

Before evaluating the likelihood of this scenario, a brief consideration of the
surface-area problem is in order. The general formulae for several common cell
shapes are provided in Table 8.1. Regardless of the shape, volume always increases
with the cube of a linear dimension, whereas the surface area increases with the
square of the linear measure. The surface-area to volume ratio depends on shape,
but it is always inversely related to a linear dimension of the cell.

Because the production of ATP in prokaryotes is highly dependent on complexes
embedded in the plasma membrane, the geometric-constraint argument implies that
if the cell surface is a limiting resource, there should be a reduction in energy
production per unit volume with increasing cell size. However, the analyses in the
previous section already shed doubt on this assertion, showing that increased cell size
is associated with higher, not lower, maximum rates of growth in bacterial species.
In contrast, mitochondria-bearing eukaryotes have lower energetic capacities than
prokaryotes on a volumetric basis, and growth rates decline with with increasing cell
size. This matters from an evolutionary perspective because it is the growth rate
per unit volume, often called the specific growth rate, that determines the rate of
gene flow into the next generation. Thus, observations on the growth-rate potential
across the Tree of Life are uniformly inconsistent with the basic premise underlying
the Lane hypothesis.

Table 8.1. Geometric features for cells of common shapes. Abbreviations: r < £, radii or
half-widths for spheroids; h, full length of a cylinder or rod; o = h/r or £/r. Note that for
a rod, h is the length from one rounded tip to the other. The formula for the surface area
of a spheroid is known as Knud Thomsen’s approximation.

Shape Surface Area (S) Volume (V) S|V

Sphere 4rr? (4/3)mr3 3/r
Cylinder 27r(r + h) nr2h 20+ a)/h

Rod 2mrh 7r2[h — (2r/3)] (2a/r)/[a — (2/3)]
Prolate spheroid ~ 2.027r%(1 4 2/!-61)0:63 (4/3)mr2e (1.5/4)(1 + 2161063

Energy production and the mitochondrion. A consideration of eukaryotic
cell anatomy provides a more mechanistic view of why the total membrane ener-
getic capacity of eukaryotic cells is nothing out of the ordinary. A key question is
whether mitochondria endow eukaryotic cells with enhanced membrane surface area
for the occupancy of ATP synthase. Although the situation at the time of first col-
onization of the mitochondrion is unknown, the iconic view of mitochondria being
tiny, bean-shaped cellular inclusions is not generalizable. For example, many uni-
cellular eukaryotes harbor just a single mitochondrion or one that developmentally
moves among alternative reticulate states (e.g., Burton and Moore 1974; Rosen et
al. 1974; Osafune et al. 1975; Biswas et al. 2003; Yamaguchi et al. 2011; Uwizeye
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et al. 2021). Such geometries necessarily have lower total surface areas than a col-
lection of spheroids with similar total volumes. For the range of species that have
been examined, many of which do have small individualized mitochondria, the total
outer surface area of mitochondria per cell is generally on the order of the total
area of the plasma membrane, with no observed ratio exceeding 5:1, and ratios for
the smallest species being less than 1:5 (Figure 8.7a). Given the putative archaeal
nature of the cell that hosted the primordial mitochondrion (Chapters 3 and 23),
it is likely that the starting condition resembled the situation in today’s smallest
eukaryotes.

Although the outer surface area of the mitochondrion has been the most common
source of measurements, it is less relevant than the inner membrane, where the ATP
synthase complex sits. However, for the few species with available data, the ratios of
inner to outer membrane areas for mitochondria are modest — ~5.0, 2.4, 2.5, and 5.2,
respectively, in mammals, the green alga Ochromonas, the plant Rhus toxicodendron,
and the ciliate Tetrahymena (summarized in Lynch and Marinov 2017). Moreover,
the total surface areas of mitochondria substantially overestimate the real estate
allocated to ATP synthase complexes, which are often restricted to two rows on the
narrow edges of the inner invaginations (called cristae), often comprising < 10% of
the total internal membrane area (Kiihlbrandt 2015).

Three additional observations raise further questions as to whether membrane
surface area is a limiting factor in ATP synthesis. First, multiple observations on
the developmental responses of organelles to cell growth indicate that the total mito-
chondrial volume remains proportional to cell volume (Atkinson et al. 1974; Grimes
et al. 1974; Posakony et al. 1977; Pelligrini 1980; Rafelski et al. 2012), and the same
has been observed in the comparative analysis of protist species (Fenchel 2014).
From arguments in the preceding section, this implies that the surface area of mito-
chondria scales with the 2/3rds power of cell volume. Thus, if mitochondrial surface
area limits cellular energy production, to maintain mitochondrial generating power
capacity per unit volume, the concentration of mitochondria would need to scale as
V1/3 rather than following the observed volume-independent pattern. Second, only
a fraction of bacterial membranes appears to be allocated to bioenergetic functions
(Magalon et al. 2015), again shedding doubt on whether membrane area is a limiting
factor for prokaryotic energy production. Third, as will be discussed more fully in
Chapter 9, in every bacterial species for which data are available, growth in cell
volume is exponential or close to it. Thus, as in the among-species pattern (Figure
8.5), growth rates of individual bacterial cells increase with cell volume despite the
reduction in the surface area:volume ratio.

Still further insight into this issue derives from the average packing density of
ATP synthase for the few species with sufficient proteomic data (Lynch and Marinov
2017). For example, the estimated number of complexes in E. coli is ~ 3000, and the
surface area of the cell is ~ 16 um?. A single ATP synthase in this species occupies
~ 64 nm? (Liicken et al. 1990) of surface area, so the total set of complexes occupies
~ 2% of the cell membrane. Drawing from additional observations on four other
diverse bacterial species, the overall average membrane occupancy of ATP synthase
is just 1% in bacteria (Lynch and Marinov 2017).

This kind of analysis can be extended to the few eukaryotes for which data are
available, noting that eukaryotic ATP synthases are slightly larger, with maximum
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surface area of ~ 110 nm? (Abrahams et al. 1994; Stock et al. 1999). Although
ATP synthase resides in mitochondria in eukaryotes, it is relevant to evaluate the
fractional area that would be occupied were they to be located in the cell membrane.
Such hypothetical packing densities are 5 to 7% for yeast and mammalian cells
(Lynch and Marinov 2017). (Adding in the membrane occupancy of the entire ETC
would increase these proportions by ~ 4-fold, in both prokaryotes and eukaryotes).
These observations suggest a ~ 5-fold increase in ATP synthase abundance relative
to cell-surface area expectations in eukaryotes, although the data conform to a
continuous allometric function with no dichotomous break between bacteria and
eukaryotes (Figure 8.7b).

To sum up, these multifaceted observations are consistently contrary to the idea
that the relocation of membrane bioenergetics endowed eukaryotes with enhanced
growth efficiency beyond what would be expected of bacterial cells of similar size.
Indeed, if there are any effects at all, they appear to be negative. One could perhaps
argue that eukaryotes would be even poorer growers were it not for the presence of
mitochondria, but extrapolations into the realm of unobserved data is inadvisable,
the ancient belief in a flat Earth being a well-known example.

Cellular investment in ribosomes. The ribosome content of a cell provides an-
other strong indicator of its bioenergetic potential, translation capacity in particular.
Owing to the large number of proteins required to build the complex, ribosomes are
energetically costly, and the number per cell within a species appears to be uni-
versally correlated with cellular growth rate. At low nutritional states, cells reduce
their investments in ribosomes relative to components of the cell involved in nutrient
uptake (Chapter 9). One might then expect variation in the translational capacity
of cells of different species to reflect their intrinsic bioenergetic potential.

As noted in Chapter 7, the genome-wide total and mean number of transcripts
per gene scale with cell volume as V%42 and V%26 respectively, and the analogous
scalings for proteins are V-9 and V% with no dichotomous break between prokary-
otes and eukaryotes (Lynch and Marinov 2015). As with the transcripts they process
and the proteins they produce, the numbers of ribosomes per cell also appear to scale
sublinearly with cell volume, o« V%8 in a continuous fashion across bacteria and
unicellular eukaryotes, including cultured cells from multicellular species (Figure
8.8). Note that under the assumption that ribosomes produce proteins at approxi-
mately constant rates in different organisms, the scaling of protein production per
volume would be V08 /V = V=020 Thus, the cellular concentration of ribosomes
matches the scaling of maximum growth rates with eukaryotic cell size outlined in
Figure 8.5.

The mitochondrion as a driver of eukaryotic evolution. Lane (2015) and
Lane and Martin (2010) have proposed a scenario for how the mitochondrion be-
came established by a series of adaptive steps, arguing that the eukaryotic leap to
increased gene number and cellular complexity, and a subsequent adaptive cascade
of morphological diversification “was strictly dependent on mitochondrial power.” A
similar argument was made by DeLong et al. (2010), and many others have repeated
the narrative that eukaryogenesis and all of the associated downstream effects would
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be impossible without mitochondria.

However, as should now be clear, there is no evidence in support of this hy-
pothesis. Indeed, diverse sets of comparative observations all lead to the opposite
conclusion. Large bacterial cells do not suffer from reduced rates of biomass pro-
duction, but eukaryotic cells do. There is not a quantum leap in the surface area of
bioenergetic membranes in eukaryotes. The idea that ATP synthesis is limited by
total membrane surface area is not supported. Moreover, the numbers of ribosomes
and ATP synthase complexes per cell, joint indicators of a cell’s capacity to convert
energy into biomass, scale with cell size in a continuous fashion both within and be-
tween bacterial and eukaryotic groups. In addition, as will be noted in subsequent
chapters, the absolute costs of producing not only ribosomes but the remaining
proteins in cells (the members of the electron-transport chain in particular) are sig-
nificantly higher in eukaryotes than in bacteria, owing to the substantial increase
in complex size, gene lengths, investment in nucleosomes, etc. Finally, there is the
additional matter of the expense of building mitochondria, associated with the high
biosynthetic costs of lipid bilayers (Chapter 15).

More will be discussed with respect to the origin of the mitochondrion in Chap-
ter 23, but the idea that the mitochondrion engendered a bioenergetics revolution
can be put to rest for now. The relocation of membrane bioenergetics to inner mi-
tochondrial membranes may have endowed eukaryotes with novel possibilities for
further remodeling of cellular features. But an enhanced capacity for transforming
energy into biomass was not one of them.

Summary

e (ell volumes vary by approximately eleven orders of magnitude across the Tree
of Life, with most being in the range of 1072 to 10® um? in volume. Although
most prokaryotic cells are < 10 um? in size, a few giants exceed 10° ym?, and
a few unicellular eukaryotes with complex morphology are orders of magnitude
larger.

e Species-specific mean phenotypes for various traits often scale in a continuous
manner with cell size, implying substantial constraints on evolutionary diversi-
fication. A central goal of evolutionary cell biology is to determine the degree
to which such patterns are consequences of biophysical constraints, selective dis-
advantages of discordant combinations, and/or outcomes of a reduction in the
efficiency of selection that increases with cell size.

e One of the most studied physiological traits is metabolic rate, which scales posi-
tively with cell volume in a nearly isometric fashion in unicellular species. Such
behavior is inconsistent with the 2/3 or 3/4 power-law scaling often invoked in the
literature for multicellular species. Despite their ease of acquisition, metabolic-
rate measures provide little insight into the basic currency of natural selection.
However, when combined with growth-rate data, they can yield information on
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the efficiency of the rate of conversion of food resources into growth and repro-
duction.

e The energetic costs of constructing and maintaining cells scale nearly isometri-
cally with cell volume across the Tree of Life, despite the significant differences
in cellular architectures between prokaryotes and eukaryotes. The ultimate bio-
physical/evolutionary constraints on the total costs per unit volume remain to be
determined, but it is relevant that the caloric content of biomass exhibits little
phylogenetic variation.

e Maximum cell-division rates scale positively with cell size among heterotrophic
bacterial species, but negatively among eukaryotic heterotrophs. Similarly, there
is a directional shift in the efficiency of conversion of energy to growth in het-
erotrophic bacteria vs. unicellular eukaryotes, with growth efficiency being lowest
in large eukaryotic cells, and highest in large prokaryotic cells.

e The precise mechanisms that define the upper limits to growth rate remain un-
resolved, but the case can be made that the negative scaling with cell size in
eukaryotes is at least in part a consequence of the reduced efficiency of natural
selection operating on growth-rate related mutations in organisms with progres-
sively larger cell size. As cell size increases, the effective population size decreases,
and a larger number of mild growth-rate reducing mutations are free to drift to
fixation.

e It is commonly asserted that the establishment of the mitochondrion released
the host eukaryotic cell from a surface area:volume constraint, precipitating a
bioenergetic revolution. However, a diversity of observations, ranging from the
scaling of energetic traits with cell size to the anatomy and cellular content of
mitochondria, ATP synthase, and ribosomes, are inconsistent with this hypoth-
esis.
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Foundations 8.1. The cost of building a cell. Cell-division rates ultimately
depend on the rate of acquisition of energy necessary to build a new cell. Arguably,
the best currency to use in such analyses is units of ATP usage, as it is the hydrolysis of
phosphate bonds in the conversion of ATP to ADP (and in some cases, ADP to AMP,
or GTP to GDP) that delivers the vast majority of energy for cellular functions. In
principle, with a solid enough understanding of biosynthetic pathways and the various
inputs of cellular resources, one could calculate the total energy required to build
a cell by summing over the demands for the replacement of proteins, nucleic acids,
lipids, etc. However, energy transformation is not 100% efficient, cellular components
turn over on time scales less than the life of a cell, and energy must be invested into
additional maintenance functions. Thus, the total energy utilized by a cell before
giving rise to two daughters must exceed the cost of producing the standing levels of
cellular components. This total level of investment (maintenance plus construction)
represents the net cost of building a cell.

Determining the quantities of interest here is generally difficult for cells growing in
natural environments, as most heterotrophic organisms consume a variety of resources
varying in energy content. Thus, most knowledge in this area is derived from the
growth of microorganisms on a defined medium, with a single limiting carbon/energy
source that enters a metabolic pathway with well-understood ATP-generating proper-
ties. If the organism can be grown in a chemostat (Figure 8.3a), it is straight-forward
to calculate both the rate of cell division and the rate of substrate consumption, and
therefore to obtain the ratio, i.e., the yield of cells per unit consumption.

Data derived from such analyses were the source of the information presented in
the preceding chapter on yields of biomass per unit carbon consumption (Figure 7.8).
However, as previously noted, the level of yield depends on the nature of the carbon
source, so a more meaningful measure focuses on a secondary conversion to the yield
per unit ATP hydrolysis. Such a measure is more generalizable, as it accounts for
differences in energetic contents among alternative carbon sources.

A chemostat (Figure 8.3a) consists of a closed environment in which sterilized
medium is pumped in at a defined rate, with resource-depleted effluent (including
the cells suspended within it) being eliminated at the same rate. If such a system
is seeded with a pure population of a microbe, after several rounds of cell division,
the population size will reach a steady state defined by the flow rate and the nutrient
concentration. At this point, the population will have grown to a density at which the
cell-division rate b equals the dilution rate d (i.e., the flow rate divided by the culture
volume). The rate of resource consumption per cell is then equal to the rate of loss
of substrate (the flow rate times the concentration difference between the inflow and
outflow) divided by the number of cells in the steady-state culture.

Joint insight into maintenance and growth requirements is acquired by culturing
cells under different flow rates. Such treatment imposes different nutritional states,
as low and high dilution rates lead to high and low population densities (and hence
low and high nutrient availabilities per cell). Assuming a constant rate of resource
consumption per cell necessary for maintenance (C}y), the consumption rate (per unit
time) at cell-division rate b (equivalent to the dilution rate d) can be written as

C=Cuy+(b-Cg) (8.1.1)

where Cg measures the total growth-related consumption per cell division (Tempest
and Neijssel 1984; Russell and Cook 1995). From a fitted least-squares regression of
observed consumption rates C' against growth rates b, the intercept and slope respec-
tively estimate the cellular requirements for maintenance per unit time and growth
per cell division, Cy; and C¢ (Figure 8.3b).
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The total cost of producing a cell at any growth rate b can be obtained by
multiplying the consumption rate C' by the mean cell-division time, which is equivalent
to the reciprocal of the cell division rate, 1/b,

Cr = (Cy/b) + Cq, (8.1.2)

Provided the assumption of a constant rate of basal metabolism independent of the
growth rate is correct, this means that lifetime resource requirements are higher in
slower-growing cells owing to the increased cumulative maintenance requirements un-
der a longer lifespan. (The first term in Equation 8.1.2 scales with the cell-division
time).

In the preceding formula, the units associated with Cr and Cg are of the form
(amount of resources consumed)/cell. Here, however, we are interested in defining
Cr to be the number of ATP hydrolyses required to yield a new cell, so appropriate
conversions need to be made. Cg is then defined as the total number of ATP hydrolysis
equivalents consumed in the production of building blocks leading to an offspring cell
(independent of time), and Cs as the number of ATPs utilized per cell per unit time
for maintenance. The quantity 1/C¢ is often denoted as Yiax, as it represents the
yield of cells per unit resource consumption that would occur in the absence of basal
cellular requirements.

Although the general approach just taken assumes that metabolic requirements
are constant, independent of the rate of growth, alternative formulations have been
developed for the situation in which there is an additional metabolic cost to growth
(Tempest and Neijssel 1984; Wieser 1994; Russell and Cook 1995). Note, however, that
if maintenance costs are linearly related to the growth rate, this additional contribution
is simply contained within the term C¢g in Equation 8.1.1, but in principle, a term
that is a nonlinear function (e.g., a quadratic) of b can be included. Although such
alternative expressions can yield somewhat different interpretations on how energy is
partitioned as a function of the growth environment, the total energy requirement
observed at any particular growth rate remains unambiguous.

Foundations 8.2. Connecting metabolic rates with growth potential. The
power of the preceding (Pirt-plot) approach is that it can be applied to any sort of
energy source, provided proper conversion to the level of ATP equivalence can be made.
However, aside from the laborious nature of maintaining chemostats, the challenges
become almost insurmountable with organisms requiring a complex diet, as is the case
for the heterotrophic eukaryotes that make a living by consuming other cells. The
problem here is that food resources consisting of undefined molecular mixtures cannot
be converted to ATP equivalents based on basic biochemical principles.

For this reason, we turn to a second approach, motivated by the potential utility
of joint information on metabolic rate and growth rate in unicellular species. If one
has joint information on the rate of oxygen consumption (M, numbers of O2 molecules
consumed/cell/time) and the rate of cell division (R, the inverse of the cell doubling
time), M/R provides an estimate of the number of Oz molecules consumed per cell
division. (Because metabolic rates are generally recorded as volumetric consumption
rates, to obtain M, the appropriate conversion of units needs to be made. For example,
at standard biological temperatures and pressures, 1 L (liter) Oy ~ 0.045 mol O, and
multiplying by Avogadro’s number yields 2.7 x 10?2 molecules of O,/liter). Basic
observations from biochemistry (Foundations 17.2) indicate that the number of ATPs
produced per oxygen atom consumed (the so-called P:O ratio; Mookerjee et al. 2017)
~ 2.5, so under steady-state assumptions, 5M /R provides an estimate of the number
of ATP hydrolyses per cell division (as the number of ATPs per O is 5).
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A final key issue here is that 5M /R only represents the fraction of carbon re-
sources allocated to energy production (@), the remainder being used as carbon skele-
tons in biomass production. Analysis of the biosynthetic pathways of amino acids,
nucleotides, and lipids leads to estimates of # = 0.21, 0.17, and 0.27, respectively
(Chapter 17). As there are numerous, small additional ATP-consuming costs asso-
ciated with biomass assembly, e.g., polymerization, protein folding, cargo delivery,
mRNA replacement, etc. (Lynch and Marinov 2015, 2017), and nucleotides comprise
a minor fraction of total biomass, a reasonable first-order approximation for cell-wide
6 is then 0.5, and dividing 5M /R by this leads to

10M
L~ OT’ (8.2.1)

as an alternative measure of the total energetic requirements for daughter-cell con-
struction (again, in units of ATP-hydrolysis equivalents). The utility of this approach
is the lack of requirement for detailed knowledge of the nature of the food supply,
which instead is reflected in the more easily observed metabolic rate.

As an explicit example of the utility of this approach, we consider a broad set of
data for ciliate species with nearly a nearly 10, 000-fold range of variation in cell size
(Figure 8.9). The rate of cell division (per day) scales negatively with cell dry weight
(B, in ng),

R~56B7%2%% (8.2.2a)

whereas the metabolic rate (molecules Oz /cell/day) scales positively
M =~ (3.4 x 10'3)B%-62, (8.2.2b)

yielding
Cl ~ (6.1 x 10'3) B84, (8.2.2¢)

This can be compared to the regression based on Pirt-plot analyses (Equation 8.2b),
which after conversion of cell volume to cell dry weight becomes

Cg =~ (6.7 x 10'3)B"05, (8.2.3)

Thus, the two approaches give fairly similar results, although the Pirt-plot formula (to
which only a single ciliate contributes) is closer to an isometric relationship.
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Figure 8.1. Distributions of species-specific cell volumes for major phylogenetic groups for which
multiple measures are available. Solid points denote group means, bold and narrow horizontal bars
denote standard deviations and ranges. Data from Lynch et al. (2022b).
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Figure 8.2. Allometric scalings of metabolic rate per cell (M) with cell volume (V") in heterotrophic
unicellular species, with units given on the axes: M = 23.3B1-01 (solid black line; standard error
of exponent = 0.03); separate regressions for bacteria and unicellular eukaryotes (dashed lines) have
slopes of 1.26 and 0.97, respectively, although these are not significantly different. Data are from
DeLong et al. (2010) with updated cell volumes derived from the survey in Lynch et al. (2022b).
All metabolic rates are scaled to expected values at 20°C using a Ql(} value of 2.5.
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Figure 8.3. Estimating the costs of building and maintaining cells with chemostat cultures.
Left) A chemostat (the central vessel) with a continuous input of resources (set by the valve on
the upper reservoir containing sterile medium) and outflow into the bottom discard container.
Aeration ensures an even distribution of cells within the culture and helps prevent wall growth.
Right) A typical Pirt plot of the rate of glucose consumption by cultures of a bacterium grown
at different dilution rates. Note that the measure of resource consumption is in units of glucose /
total cell dry weight; this can be converted to ATP consumption per cell using information on the
ATP equivalents derived per unit glucose consumed and the dry weight of individual cells. The
y-intercept, with units of resource consumed / cell dry weight / time, is a measure of the basal
maintenance requirement; the slope, with units of resource consumed / cell division (beyond basal
metabolic requirements), is a measure of the total resource requirements for cell growth.
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Figure 8.4. Cellular energetic requirements in units of nmumbers of ATP — ADP hydrolysis
events, all scaled to 20°C to normalize results from studies involving different temperatures. The
maintenance and growth costs for bacterial (black) and unicellular eukarvotic (blue) species are
fitted together with allometric regression lines. Growth data for cell cultures from a few multicellular
eukaryotes (red) are not included in the regression analysis. From Lynch and Marinov (2015).
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Figure 8.5. Maximum growth rates, In(2)/doubling time, for a) heterotrophic and b) phototrophic
unicellular species, scaled to expected values at 20°C. Fitted lines are given only for the cases in
which the least-squares regression is significant; the slopes are 0.28 for heterotrophic bacteria, -0.21
for amoeboid eukaryotes, -0.22 for ciliates, -0.21 for heterotrophic flagellates (excluding dinoflag-
ellates), -0.19 for dinoflagellates, and -0.09 for both green algae and diatoms. The dashed ellipses
enveloping the data for bacterial and eukaryotic heterotrophs in the upper panel are transferred to
the lower panel for comparative purposes. From Lynch et al. (2022a).
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Figure 8.6. Evolutionary long-term average performance (under drift-mutation-selection balance)
relative to the maximum value of a trait experiencing an exponential fitness function. Each locus
has two possible alleles, 4+ and —, with additive effects on the trait, but with individual fitness
declining as e *", where s is the selective disadvantage, and 7 is the number of — alleles per
individual. Reversible mutation operates between the two alternative alleles at rates g from —
to +, and %1p from + to —. Populations consist of N haploid individuals. a) Results are given
for four values of s for the situation in which there is free recombination between sites. Mean
performance makes a rapid transition from the neutral expectation g / {U-Dl +u1p) to the domain
in which the beneficial-allele frequency =~ 1 at the point at which 1/N = s. Analytical results are
obtained from formulae in Kimura et al. (1963). b) Results for the situation in which s = 107°,
under the assumption of L completely linked genomie sites, all with the same effects. With larger
numbers of linked sites, the gradient in mean performance with N becomes more gradual. Here and
in panel d, the results are obtained by computer simulation using the methods in Lynch (2020).
c) Modification of the situation in panel a to allow for a mixture of unlinked genomic sites with
different effects, with various weights given to the four curves in panel a. As the population size
increases, selection becomes progressively more efficient at promoting alleles with smaller effects.
For example, L = 10x means that for each site with effect s = 10, there are ten with s = 107°,
100 with s = 10~7, and 1000 with s = 10~%. d) The situation in which there are blocks of linked
loci, one major-effect site with s = 1072, and variable numbers (L) of linked loci with minor effects
s = 1077. As L increases, the minor loci contribute proportionally more to total performance, and
create background selection interference with the major locus and amongst themselves.
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Figure 8.7. The scaling of mitochondrial features with cell size. Left) Relationship between the
total outer surface area of mitochondria and that of the plasma membrane. Diagonal lines denote
three idealized ratios of the two. Data are from Lynch and Marinov (2017) and Uwizeye et al.
(2021). Right) The number of ATP synthase complexes per cell scales with cell surface area (S,
in um?) as 1135525 (r2 = 0.99); black data points are for bacteria.
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Figure 8.8. The number of ribosomes per cell scales with cell volume (V) in gm®) as 88101°-80
(r? = 0.92; standard error of the exponent = 0.04). Color coding as in the previous figure, with
green denoting green algae and land-plant cells. From Lynch and Marinov (2017, 2018) and a
few additional data points from more recent literature (Supplemental Table 8.3). Although the
estimated slope based on bacterial data alone is hypermetric, and that for eukaryotes alone is
hyvpometric, neither is significantly different from 1.0, nor from each other.
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Figure 8.9. Allometric regressions of maximum growth rate and metabolic rates of ciliates, with
all values normalized to a temperature of 20 C. From Lynch et al. (2022b).
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