Cell-Structure Support and Motility Systems

* Cytoskeletal proteins.

e Cell walls and cell shape.

* Molecular motors.

* Swimming motility.




Evolution of Cytoskeletal Proteins

* Filaments / fibrils evolved at least two times prior to the emergence of eukaryotes: actins and tubulins.
* Diversification to novel functions within eukaryotes, and shifts in functional roles relative to prokaryotes.

* Energetic costs of investment.
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Actin Filaments

* Assembles into homopolymeric double-filaments via ATP hydrolysis.

« Treadmilling — addition of monomeric subunits at the plus (barbed) end, combined with removal at the minus end results in “apparent” movement

of a filament; there is a critical concentration of monomers beyond which the two rates are equal, and there is no net growth.

Functions include organelle motility, cell division, cell signaling, and maintenance of cell shape.
Amino-acid sequences are highly conserved across all of eukaryotes (only 10% AA-sequence divergence between yeast and mammal).

Many accessory proteins determine how and when microfilaments assemble, e.g., heptameric ARPs.
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Evolutionary Diversification of Actin Functions in the Ciliated Protozoan, Paramecium tetraurelia

Pt-actin1-6 Pt-actin1-5
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Fig. 11. Schematic distribution of actin isoforms in the Paramecium cell, as outlined in Table 1. The trafficking scheme is based on published Pracing.o e & P-ALP1-1
reviews (Fok and Allen, 1990; Allen and Fok, 2000; Plattner and Kissmehl, 2003). Actin distribution is based mainly on the present data Facint- Sc-ARPS
obtained with GFP localization in vivo and with antibody labeling, but also takes into account data from previous work (Tiggemann and Hs-ARPT1 _
Plattner, 1981; Kersken et al., 1986a; Kersken et al., 1986b; Kissmehl et al., 2004). The scheme contains elements of the osmoregulatory Hs-ARPMI N * Sc-ARFS
system (a, ampula; cv, contractile vacuole; ds, decorated spongiome; ss, smooth spongiome), though consistently unlabeled, of the phagosomal Hs-ARPS
apparatus (as, acidosomes: cf, cytopharyngal fibers: cp. cytoproct: ci, cilia) dv, discoidal vesicles and other recycling vesicles, rv; ee, early Hs-ALPTa ’
endosome; er, endoplasmatic reticulum; fv, food vacuole; ga, golgi apparatus; gh, ghosts (from released trichocysts): oc, oral cavity; pm, plasma Pt-actin3-1 Dm-ARP8
membrane; pof, post oral fibers; ps, parasomal sacs: tr, trichocysts: gray background, cytosolic. i
7 Pt-acting-1
Sc-ARP10
Pt-actin5-1 Hs-ARP11
Dm-ARP1
Hs-ARPA Dm-ARP11
Sc-ARP1 Pt-actin9-1
Table 2. Localization of the different actin isoforms PHARP2-1 Ceacint
i - : : Dm-ARP2 Sc-ARP4
- . - Hs-ARP4
GFP localization Hs AR‘;?ARW DmARPA
Pt-AR Pt-actind-1

actinl-2  actinl-4  actinl-6& actinl-9 actin2-1 actin3-1 actin5-1 actinf-1  acting-1

Cortex - — — - - + + _ +
Orral cavity - - — - - + _ ¥
Oral filaments - - — — — - + — +
Phagosomes + - - + - + + - +
Cilia - - - _ + + _ _ _
Cytosolic compartment - + + - + + - + -

Cleavage furrow - - - _

Hs-ARP3 Sc-ARP3 Pt-actinG-1

Sehring et al., 2007, J. Cell Science



Tubulin Microtubules

The “elementary particles” are heterodimers of a- and B-tubulin, which assemble into higher-order structures called
protofilaments, which in turn assemble into tubes of 13 laterally connected filaments.

Assembly involves GTP hydrolysis.

a

GTP- Protofilamant
tubulin

Assembly dynamics and bending makes the filaments cytomotive, o
and specific motors use them as highways for organelle transport. 8

Roles in maintenance of shape, cell division (mitotic spindle), and motility
(cilia and flagella).

Shrinking microtubule

Post-translational modifications: the Tubulin Code in the C-terminal tails
marks subpopulations of microtubules for specific downstream functions.

Growing microtubule

5 nm Metaitable intermediste
Minus end microtubule

Mature Reviews | Molecular Cell Biology



Intermediate Filaments

Differ from microtubules and microfilaments in structure and phylogenetic distribution.

Not dynamic, and are primarily used for mechanical strength.

Nuclear lamins, which support the nuclear envelope, and keratins are intermediate filaments.

Largely eukaryotic, an exception being crescentin in Caulobacter, which causes the helical cell shape
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Diverse Functions of Actins in Prokaryotes

Cell-shape sculpting: MreB.
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Architectural variants: bacterial actins all share the core actin structural fold.
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Tubulin-Like Filaments in Bacteria

» Cytokinesis in bacteria often involves constriction of an internal ring consisting of the FtsZ protein.

« Although the structure of FtsZ subunits is very similar to that of tubulin,
they are only 10% similar at the AA-sequence level.

« Despite this sequence divergence, FtsZ and tubulin are identical at key sites
involved in ATP binding, suggesting common ancestry.

* Unlike tubulin, which consists of heterodimeric subunits that form tubes,
FtsZ is homopolymeric and forms filaments, not tubes.

o3 tubulin FtsZ dimer
protofilament TWS5A
1JFF

Wickstead and Gull (2011); Lowe and Amos (2009)



Some Members of the Verrucomicrobiales Genus Prosthecobacter make Microtubules

« Two tubulin-like genes, BtubA and BtubB, make proteins that form heterodimers,
which in turn polymerize into five-filament microtubules.

« BtubA/B are very closely related to eukaryotic tubulin — acquired by horizontal
transfer or the source of eukaryotic subunits?

FtsZ-like

archaeal / bacterial FtsZ 4
“~ ,
o \| |
| \ 5}
TubZ /| RepX n
6 ! cryptic seam
- n-C-like

Figure 4. Structural model of “bacterial microtubules.” (A) 2-D
schematic of the proposed architecture of bacterial microtubules built

—57¢ from BtubA (dark-blue) and BtubB (light-blue). Protofilaments are
— numbered 1-5. (B) 3-D comparison of the architectures of a bacterial
— —| microtubule (left; BtubA in dark-blue; BtubB in light-blue) and a 13-
. B-related protofilament eukaryotic microtubule (right; P-tubulin in black; o-
eu ka ryOtIC 4 BiubA tubulin in white). Seams and start-helices are indicated as in (A).

doi:10.1371/journal.pbio.1001213.g004

Nalk
Tubulin

Figure 6. BtubA and BtubB represent two novel tubulin subfamilies in the eukaryotic clade of tubulins. In global phylogenetic analyses
of the FtsZ/Tubulin superfamily, BtubA and BtubB stably clustered within the clade of eukaryotic tubulin subfamilies (i.e, the Tubulin family). A
second stable group of sequences comprised bacterial and archaeal tubulin homologues (FtsZ, FtsZ-like, TubZ, RepX). The relationships between
tubulin subfamilies were instable (except -8 and «-). Here and in further phylogenetic analyses (Figure 511, Tables 51 and 52, and Materials and
Methods) no stable associations between BtubA or BtubB and any tubulin subfamily were detected, in agreement with a previous less
comprehensive study [11]. Shown is one representative maximum likelihood tree calculated using a 10% minimum similarity filter. A black circle
indicates that the respective node/group was stable in different trees. Bar represents 1% estimated evolutionary distance. Numbers indicate how
many sequences were included in a closed group.

doi:10.1371/journal.pbio.1001213.9006 Pilhofer et al. (2011 , PLoS Bi0|.)



Role Reversal

Bacteria employ a ring of tubulin-related protein in cytokinesis, whereas eukaryotes employ a ring of actin.

* At least three divergent mechanisms of cell division
exist within the archaea:

one bacterial (FTsZ)-like,
one eukaryotic (actin)-like,

one based on an ESCRT-related system
(endosomal sorting complex required
for transport; used in vesicle partitioning
in eukaryotes).

Bacteria use actin-like proteins in chromosome separation, but eukaryotes deploy spindle microtubules for such purposes.
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Figure 2 | The distribution of the key components of membrane manipulation systems among the Archaea.

The phyletic patterns for indicated proteins are represented by filled circles to show the presence of the proteins and
empty circles to show their absence. This is arranged according to the archaeal phylogenetic tree, the topology of which
is a consensus based on several recent analyses® . Species are coloured by phyla and then subdivided into orders. VPS4,
vacuolar protein sorting 4.

(Makarova et al. 2010, Nature Rev. Microbiol.)



Energetic Investment in Actin Filaments and Tubulin Microtubules

Fraction of Whole-Cell Construction Costs:

Actin
Saccharomyces cerevisiae 0.0007
Schizosaccharomyces pombe 0.0031
Mouse fibroblast cells 0.038
Human Hela cells 0.001

FtsZ
Escherichia coli 0.0016

Tubulin

0.0022
0.0007

0.019
0.005

MreB

0.0004






Cell Walls and Cell Shape
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Benefits and Costs of Cell Walls and Shapes

* Hard walls resist turgor pressure, eliminating the need for a contractile vacuole.
* High surface area : volume ratio can enhance nutrient uptake.
* Flatter, more elongate shapes reduce sinking velocities.

* Protection against predators / herbivores.

e Rod-shaped bacteria tend towards (SA : V) = 2rtV-Y/3, when grown at different nutrient levels or compared
between phylogenetic groups (Ojkic et al. 2019).

* Thisimplies a nearly constant aspect ratio (length : width) = 4.

* Single amino-acid substitutions in the sculpting protein MreB can generate major changes in cell shape.



Realtor’'s Rule of Thumb

The yeast Saccharomyces cerevisiae: cost of entire cell = 5 x 10%° glucose molecules.
* Cell wall is 4% protein, 30% mannose, 60% glucan, 1% chitin.

Mannose and glucans impose a requirement of 1.2 x 10%° glucose molecules.

With a total of 1.7 x 10° proteins, an average cost of synthesizing and concatenating amino acids of 34 ATP hydrolyses each,
and an average protein length of 400 amino acids, the cost of proteins (in glucose equivalents) is 7.2 x 108.

* Total fractional cost associated with the wall = 26%.
* Cell membrane constitutes an additional 5% of the cell budget.

Entire cell envelope cost = 31% of the total cell budget.

* Gram-negative E. coli and Gram-positive Bacillus subtilis: cost of the wall is less than half that of the membrane(s),
but the total envelope cost is still = 30% of the total cell budget.






Molecular Motors: a unique eukaryotic invention.

g WY ADP+ G
ATP P, <«—— Cargo-binding domain
Motor protein i Coiled coil stem
¥ FYSX S A Ay AR YT ATP- and track-binding domain

Microtubule :

« All work by the same mechanism — the transduction of chemical energy into mechanical force, via the hydrolysis of ATP — each
hydrolyzed results in one step forward.

« Each has an ATP-binding site, a track-binding site, and a tail domain involved in cargo attachment.

« Mechanical transport of cargos is carried out by three types of cytoskeletal motors — dynein, kinesin, and myosin — all of which
have diverged into multiple families with diverse functions.

« Myosin travels exclusively on actin flaments; kinesins and dyneins on microtubules (tubulin filaments).

« Commonly exploited by bacterial pathogens as transport mechanisms.

* |nvolves coevolution between motors and tubulin/actin surface residues.



Recognition capacity and rate of progression of molecular motors (kinesins) is defined by sequences of C-terminal tubulin tails.
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Figure 1 Diversity of C-terminal tubulin tails. (a) Schematic representation of the localization of C-terminal tubulin tails (CTTs) on the microtubule lattice. Left:
schematic representation of a microtubule, with a- and p-tubulins shown as dark and light grey spheres, respectively. Right: structure of the a- and p-tubulin
dimer, with added CTTs (which interact with microtubule-associated proteins and motors). Adapted with permission from ref. 5 © 2000 Elsevier. (b) Comparison
of CTTs from all human and yeast (S. cerevisiae) tubulin isotypes. Previously identified polyglutamylation sites'*'* are labelled. Generally, all glutamate residues

Wehenkel and Janke (201 4, Nature Ce” BIOl) within these tails could serve as potential polyglutamylation sites.



Kinesins: monomeric, dimeric, and tetrameric forms; both homo- and heteromeric.

« Ubiquitous to all eukaryotes.

« Massive diversity across today’s eukaryotes; an estimated 11 families in LECA.

« Multiple functions, including mitosis, meiosis, and cargo transport.

« Most move towards the “plus” end of microtubules, from cell centers to edges.

Wickstead et al. (2010, BMC Evol. Biol.)
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Myosins: monomeric and dimeric forms exist.

a Unikonts Bikonts

« Have diversified into a large number of classes, with numerous functions (e.g., Opisthokonts

vesicle transport, motility, muscle contraction).

* Myosin and kinesin may have evolved from a common ancestor — substantially
different in size and sequence similarity, but have highly similar 3-D structures.

» Apparently absent from red algae, Giardia, and Trichomonas.

» Three ancestral genes likely in LECA.

« The modern use of these three families are consistent with LECA having a cilium
and a mechanism for moving by pseudopodia.

® DHFR-TS

® \YSc-TH1

& MYSc-MYTH4/FERM
® MYSe-SMC-DIL

Foth et al. (2006, PNAS)
Richards and Cavalier-Smith (2005, Nature) mmvesn profaryors



Dynein: the world’s largest protein.

« Have a substantially different structure than kinesins/myosins, including an
intramolecular hexameric ring, resulting from an ancient internal duplication.

* A huge molecule, >4500 amino-acid residues — so huge that perhaps every
protein contains a transcription or translation error.

« Six AAA (ATPases Associated with cellular Activities) are encoded in a single gene
(most other AAA proteins are homohexamers).

« All but one family member is associated with the flagellum: responsible for ciliar e GRS [

membrane

movement, causing microtubules to slide with respect to each other.
« Usually walk toward the minor ends of microtubules, towards the cell center.
« At least nine deeply diverging lineages, most of which go back to LECA. _ Sy B tubule

Doublet micratubule

« Were lost in the lineage leading to land plants and red algae (Wickstead and Gull 2007). The Axoneme






The Bacterial Flagellum: the Icon of “Intelligent Design” or “Irreduceable Complexity”

* Flagella appear to have evolved independently at least three times across the Tree of Life. g o

* The same basic structure can be found in one or more species in all major bacterial
groups, implying its presence in the ancestral bacterium. \

* Many losses have occurred. \

Hook-filament
junction

* Cost of motility can be high: in a stirred culture of S. typhimurium,
flagellated cells disappeared in ~10 days (Macnab 1992).

. . Out Lri
« Among bacteria, there are numerous variants: sentone __ [

* in some species, rotation is unidirectional, in others bidirectional;
* some use a proton pump, others a sodium pump;
* some species have just a single distal flagellum, others have many.

membrane
Motor

* Flagellar protein export leads to growth from the inside out, complex
with exported proteins moving through a central lumen to the tip.

secretion

system



Flagellar Motility: run and tumble in Escherichia coli.
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Type Il Secretion System: antecedent form or descent from a common ancestor?

FliD

(a)

e T3SSs are present largely in bacterial species that
interact with animal or plant hosts; either as
pathogens or endosymbionts.

* Used to inject “effectors” into the host cell.
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Current Opinion in Cell Biolagy

A cartoon showing the structural similarities between (a) the T3SS and (b) the flagellum. Reproduced with permission from Desvaux et al. [12]. The
nomenclature used is from Yersinia. In the T3SS (a), YscJLNPRSTUV have been shown to have homology with the corresponding proteins in the
flagellar system. In the flagellar system (b), FIFHIKNPQR and FIhAB have been shown to have homology with the coresponding proteins in the T35S
[12].

Egelman, 2010, Curr. Opin. Cell Biol.



The Bacterial Flagellum Consists of Components Thought to be Derived Via Gene Duplication

l:l Present in all taxa considered

l:l Entero-gammaprotecbacteria anly

l:l Beta- and Entero-gammaproteobacteria only
l:l Not in Entero-gammaproteobacteria
l:l Not in Firmicutes

l:l Sporadic distribution
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Fig. 1. Distribution of flagellar proteins (excluding chemotaxis proteins) among flagellated bacterial species. Those proteins encoded by the core gem
designated in bold. This figure is redrawn with permission from that appearing in the KEGG pathway database {(www.genome.jp/kegg/pathwa
eco02040.html).

Based on the relationships of the underlying proteins, an “inside-out” model is
suggested, with the earliest proteins arising on the cytoplasmic side, and later
proteins being located more distally.

Liu and Ochman, 2007, PNAS
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Fig.3. Network of relationships among flagellar core proteins. Above each
link is the number of genomes for which homology between a particular
protein pairwas detected by pairwise comparison at a cutoff value of 104 or
lower. Blue lines linking yellow-boxed proteins portray the homology net-
work revealed when core proteins of £ coli were subjected to pairwise
comparisons.
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Fig.4. Protein sequence similarity among the proximal rod protein FigF, the
distal rod protein FlgG, and the hook protein FIgE in E. coli. Whereas FlgF and
FlgG are homologous over their entire lengths, FIgE contains an intragenic
duplication at its N terminus.



Variation in flagellar filament thickness
and number of “protofilaments”

Bacillus Pseudomonas Salmonella

A A
Inner diameter ~25 A Inner diameter ~25 A

A
Inner diameter ~25 A

— — —
DO/D1 diameter ~125 A DO/D1 diameter ~125 A DO/D1 diameter ~125 A

DO/D1/D2/D3 diameter ~170 A DO/D1/D2/DA diameter ~230 A

Beeby, et al. (2016); Wang, et al. (2017); Thomson, et al. (2017)

~1300 pMN nm
Salmonella

Variation in flagellar base structure

MotXyY MolB
~2200+ pN nm ~3600 pN nm ~4000 pN nm
Vibrio fischeri Campylobacter jejuni  Borrelia burgdorferi



Some Bacteria Have Large Numbers of Flagella

~ 400 flagella

Scale bar: 1 um

Fenchel and Thar (2004) “Candidatus Ovobacter propellens”: a large conspicuous prokaryote with an unusual motility behaviour



The Archaeal Flagellum

* In contrast to bacterial flagella, there is no lumen within the flagellum, and assembly is by addition of subunits at
the proximal end.

* Rather than being driven by a proton-motive force, ATP hydrolysis drives rotation of the archaellum.
* The components of the whip, archaellins, appear to be unrelated to bacterial flagellins.

* There is no hook structure.

e Structurally similar to bacterial Type IV pili, which are used in twitching motility, adhering to surfaces and retracting.

Flagellum




The Eukaryotic Flagellum: the axoneme
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« The axoneme — structure around which all eukaryotic cilia and flagella are formed;
nine microtubule doublets around two central singlet microtubules.

« Atleast 100 associated proteins, none of which have obvious prokaryotic orthologs.
Ishikawa and Marshall (2017)



Positive Scaling of Average Swimming Speed and Cell Size
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Cost of Swimming at Low Reynold’s Numbers (ratio of inertial to viscous forces)

* Is this trivially small, as suggested by Purcell and others?

Efficiency of conversion of chemical energy into mechanical swimming with flagella is uniformly low, ~¥1%, owing to
Brownian motion, rotational diffusion, flagellar flexibility, helical motion, etc.

* The cost of swimming is less than the cost of building flagella.



Using Stokes’ Law to Estimate the Energy Required for Moving a Sphere of Radius r at Speed v

5 o _ The bacterium Escherichia coli (~1 um3):
Power: P=6m - 1 - r - v?/ (efficiency of conversion)

) . ) Total cost of a cell = 3 x 1019 ATP hydrolyses
* misthe fluid viscosity. YETO

* Hydrolysis of 1 mol ATP = 50 kilojoules.
* Cost of swimming~= 54 x 10° ATP / hour

Five hours / cell division = 2.5 x 108 ATPs
= 0.8% of total cell budget

The green alga Chlamydomonas reinhardtii (~150 um3):

* Cost of swimming = 0.8% of total cell budget » Construction cost of individual flagella = 108 ATPs

 Construction cost of two flagella ~ 2.5% of total cell budget Five flagella / cell > 5 x 108 ATPs

~ 1.6% of total cell budget
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