
Transcription and Gene Regulation

• Molecular stochasticity in single cells.

• Transcription factors and their regulatory motifs.

• Biophysics of recognition: facilitated diffusion and the search for regulatory motifs.

• Evolution of the regulatory vocabulary. 

• Evolutionary rewiring of transcription networks. 

Transcription factors: 
trans-acting regulatory factors

Transcription-factor binding sites: 
cis regulatory elements



Variation in Gene Expression in Single Cells

• Typically, gene expression is measured in populations of cells, obscuring the variation that exists at the individual level. 

• Because the average numbers of proteins of a particular type is often well below 100  / cell, stochastic cell-to-cell variation can be large. 

• Total among-cell variation in gene expression can be subdivided into three components:

1) genetic variation among cells,

2) extrinsic environmental variance,

3) intrinsic noise due to the vagaries of 
random molecular motion and production. 

 essential for evolutionary change

reduce the efficiency of selection

• Heritability (h2) = VG / (VG + VEe + VEi).

• Response to Selection = Heritability x Selection Differential 

miminum possible variation



Central Kinetic Components of Protein Production

• Probability gene is on:      Pon = kon / (kon + koff)

decay 
rates
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Temporal Variation in Gene Expression Within a Cell

• Gene is stochastically on / off depending on the binding of cognate 
transcription factors.  

• Messenger RNAs are produced during on periods, but decay away at 
exponential rates during off periods. 

• Protein numbers rise during periods of mRNA abundance, and decline slowly 
via during periods of mRNA rarity. Fluctuations in protein numbers are 
damped, owing to their greater longevities than mRNA molecules. 



From Li and Xie (Nature, 2011)

• There is no correlation between the number of mRNAs and the 
number of protein molecules within individual cells.  

• Proteins numbers are much higher than mRNA numbers.

Because mRNA Degradation Rates Are High Relative to Transcription Rates, the Average Number of mRNAs / Gene is Small    

Median half lives of mRNAs:

E. coli                            5 minutes           (Taniguchi et al. 2010)
S. cerevisiae 22 minutes            (Wang et al. 2002)
Mouse fibroblast           9 hours                (Schwanhausser et al. 2011)

• Raises issue about single-cell transcriptomics studies.  



From Elowitz et al. (Science, 2002)

Stochastic Gene Expression in Single Cells

• Two identical genes in the same bacterial cells, with the proteins labeled by different fluorescent markers, will have the same 
expression level only if there is no intrinsic noise within the cell. 
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Mean number of mRNAs (nm) / cell = km / γm

The Number of mRNAs / Cell is Expected to be Poisson Distributed for a Constitutively Expressed Gene

Mean = Variance



Mean number of mRNAs (nm) / cell = Pon km / γm

If the Gene is Regulated and Only Active for a Fraction of Time Pon, Number of mRNA Molecules / Cell Follows a
Mixture of Distributions



Number of mRNA Molecules / Cell, nm
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Distributions of Transcript Numbers per Cell: regulated genes exhibit elevated levels of among-cell variance in expression,
and can even be bimodal.   

Constitutive expression (Poisson)

Regulated expression (mixture)

Munsky et al. (Science, 2012)



Extension to Protein Numbers / Cell

Changes in transcript numbers:
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Average Numbers of Protein Molecules in Individual E. coli Cells Are Small

From: Taniguchi et al. (2010, Science)

Individual distributions are roughly gamma in form, with a being 
a measure of burst frequency, and b a measure of burst size. 

Poisson: 
variance, σ2 = mean, μ



Biological Features of Transcription Factors

• Transcription is generally nonautonomous, as one to several accessory TFs must be present simultaneously for 
transcriptional activation. 

• In eukaryotes, individual TFs often service multiple genes, which facilitates coregulation of gene expression

• E. coli has ~300 transcription factors: 7 control the expression of ~50% of regulated genes, whereas ~60 service 
single genes. 



Locations of Transcription-factor Binding Sites in Yeast

From Harbison et al. (Nature, 2004)



From Charoensawan et al. (Nuc. Acids Res., 2010)

Scaling of the Number of TFs with the Number of Protein-coding Genes – typically, 1 to 5% of the protein-coding genes
within a genome are TFs

• Prokaryotes: number of TFs scales 
with ~2 power of gene number.

• Eukaryotes: number of TFs scales 
with ~1 power of gene number.



From: Stewart and Plotkin (2012, Genetics)

Transcription-factor Binding Motifs Are Small, and Longer in Prokaryotes Than Eukaryotes

• Typically, 10 to 50 amino-acid residues in the TF 
are involved in contacts with the DNA.

• Although each TF has maximum affinity for a specific DNA motif, there is no general regulatory code in TFs, i.e., no 
specific language involving one-to-one matching between the amino-acid sequence of a TF and the nucleotide 
sequence of its binding site. 



Human lymphoblastoid cell line (Marinov et al. 2014, Genome Research)

Transcription-Factor Molecules Are Especially Rare in Cells
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From Kolesov et al. (PNAS, 2007)

Transcription-factor Molecules Locate Their Binding Sites by Facilitated Diffusion

A combination of one-dimensional sliding and 
three-dimensional jumping dramatically reduces 
the search time, relative to random diffusion. 

In bacteria, transcription and translation are 
colocalized, and genes often appear in operons, 
increasing the chance of rapid localization. 

• All TFs engage in promiscuous interactions with off-target sites as a consequence of the negatively charged 
phosphate backbones of the DNA and positively charged residues on the protein. 

Pete von Hippel



How Rapidly Do TFs Find Their Cognate TFBs by Facilitated Diffusion?

• With one-dimensional diffusion in E. coli, once on the DNA, it would take ~29 days for a TF to find a specific binding site.  

• With three-dimensional diffusion, the encounter rate between jumps = 

• Accounting for the size (r) of nucleotides and TFs, and the diffusion rate of a TF (D3p), the time to jump from one 
location to another is ~2.5 x 10-7 seconds.

• Once on the DNA, a TF spends ~0.0026 sec diffusing over ~100 bp, before falling off, so essentially all of the search time is 
spent directly interrogating the DNA, rather than jumping from spot to spot. 

• Because ~105 100-bp scans are required to cover the entire genome, the estimated time to locate a site is 105 x 0.0026 = 260 seconds. 

• With Ntf molecules in the cell, the search time would be reduced to 260/ Ntf seconds.



From Charoensawan et al. (Trends Genetics, 2010)

Gene regulation in LUCA must have relied on transcription factors, but only a small fraction of known
DNA-binding domains are shared across the three super-kingdoms.



Transcription Factors Bind to Specific Motifs With Different Binding Affinities

• The motifs generally vary among individual client genes, and seldom match the consensus sequence. 



Towards a Physical Model for Understanding Gene-Expression Evolution:
Characterizing Binding Sites by the Strength of Their Motif Sequences

Sum of the strength of binding over all nucleotide positions: 

• Affinity between TFs and their cognate TFBSs on the DNA are governed by hydrogen bonds.



Probability a Particular Target Site with m Matches is Bound

Ntf = number of transcription-factor molecules in the cell,

Not = number of competing functional binding sites for the transcription factor,

G = nucleotide sites per genome (each of which can initiate non-specifc binding),

2 = gain in binding in Boltzmann units.



What is the Magnitude of Background Off-Target Promiscuity?

• The number of off-target sites, G, is generally in the range of 106 to 1010 bp, with prokaryotes falling at the lower end 
and multicellular eukaryotes at the higher end of the range.

• In bacteria, the numbers of molecules per cell for particular TFs, Ntf, are often in the range of 100 to 1000, 
with just a few cases ranging as high as 50,000. The number of genes serviced by a particular TF, Not, is generally <100. 

• Thus, B is on the order of 103 to 106 for prokaryotes, and estimates for eukaryotes are in the same range. 

• If other sources of interference exist (such as promiscuous binding to other proteins), B would be higher.



Implies a drift barrier

The Probability of Binding-site Occupancy Typically Saturates at a Small Number of Matches

• Two costs / limitations of using TFs to regulate genes:

1) Changing the number of matches is a coarse-grained tuning mechanism.

2) Owing to promiscuous binding to nonspecific sites, 100s of TF molecules need to be
present in a cell to ensure that a host gene is turned on.

• Unless the level of promiscuous binding is enormous,
there is little advantage of a binding-site lengths > 10 bp.



Relating Binding Strength to Fitness: function of the number of matching sites, m

n  = number of mismatches

ℓ   = length of the optimal motif sequence

α = scaling factor for the strength of selection

B = measure of background interference

W(m) = 1 + αPon =



3ℓμ 3(ℓ-1)μ 3(ℓ-2)μ
P(n) = 0 1 2 3

3(ℓ-3)μ

μ 2μ 3μ 4μ

Quasi-Equilibrium Evolutionary Distribution of Binding-Site Affinities: the Neutral Case

µ = the rate of mutation from nucleotide x to nucleotide y (reversion rate)

3µ = rate of loss of a correct site

Decreasing number of matching sites



Adding in Selection



Equilibrium Distributions of the Number of Matches

• Distribution is independent of the mutation rate.

the neutral expectation

• The distribution under selection is simply a weighting of the 
neutral expectation.

• Unless the power of selection relative to drift (Neα) is extremely 
strong, the majority of motifs will contain mismatches.

• Depends only on the multiplicity under neutrality.



From Mustonen and Lassig (2005, PNAS)

Using the Theory to Estimate the Strength of Selection on Binding Sites
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distribution of binding to nonspecific sites 

deviation  from neutrality, e2Ns

• CRP motifs in E. coli.



From Enuameh et al. (Gen. Res., 2013)
From Nakagawa et al. (PNAS, 2013)

Transcription-factor Binding Motifs Appear to Wander Over Evolutionary Time



Coevolution of the Regulatory Vocabulary: TFs and Their Binding Sites

• TFs with larger numbers of target genes are more 
evolutionarily conserved at the amino-acid sequence level, 
including at the level of the recognition sequence. 

• Decline in binding-site specificity with increasing numbers of 
genes serviced by a TF in both E. coli and yeast (Sengupta et al. 
2002).

• Does such a condition evolve by selection so as to minimize 
the mutational burden on an organism? 

• Or are TFs with low specificity recruited more frequently into 
various regulatory pathways over evolutionary time?



From Weirauch and Hughes (Trends Genetics, 2009)

Dramatic Rewiring of Regulatory Mechanisms Is Commonly Observed in Yeasts

• Massive differences in the regulatory machinery associated with the ribosomal protein genes in the two yeasts 
Saccharomyces cerevisiae and Candida albicans. Nearly every TF used in Sc is utilized in a different way in Ca, and 
shifts in the consensus motifs for orthologous TFs occur as well. 



From Weirauch and Hughes (Trends Genetics, 2009)

Potential Paths of Rewiring of Regulatory Modules Involving Intermediate Stages of Redundancy

• Intermediate states of shared (redundant) 
regulatory motifs; subsequently experiencing
reciprocal loss. 



From Tuch et al. (Science, 2008)

Mechanisms of Regulatory Rewiring: 
How can a large set of co-regulated genes experience a coordinated switch of their regulatory pathways? 
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